Advertisement

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

  • Dominik MeidnerEmail author
  • Boris Vexler
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)

Abstract

In this article we summarize recent results on a priori error estimates for space-time finite element discretizations of linear-quadratic parabolic optimal control problems. We consider the following three cases: problems without inequality constraints, problems with pointwise control constraints, and problems with state constraints pointwise in time. For all cases, error estimates with respect to the temporal and to the spatial discretization parameters are derived. The results are illustrated by numerical examples.

Keywords

Optimal control parabolic equations error estimates finite elements control constraints state constraints discretization error. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arada, E. Casas, and F. Tröltzsch: Error estimates for a semilinear elliptic optimal control problem. Comput. Optim. Appl. 23 (2002), 201–229.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. Becker, D. Meidner, and B. Vexler: Efficient numerical solution of parabolic optimization problems by finite element methods. Optim. Methods Softw. 22 (2007), 813–833.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    R. Becker and B. Vexler: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106 (2007), 349–367.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Bergounioux, K. Ito, and K. Kunisch: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999), 1176–1194.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    E. Casas, M. Mateos, and F. Tröltzsch: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31 (2005), 193–220.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    K. Chrysafinos: Discontinuous Galerkin approximations for distributed optimal control problems constrained by parabolic PDEs. Int. J. Numer. Anal. Model. 4 (2007), 690–712.zbMATHMathSciNetGoogle Scholar
  7. 7.
    P.G. Ciarlet: The Finite Element Method for Elliptic Problems, volume 40 of Classics Appl. Math. SIAM, Philadelphia, 2002.CrossRefGoogle Scholar
  8. 8.
    K. Deckelnick and M. Hinze: Variational discretization of parabolic control problems in the presence of pointwise state constraints. Preprint SPP1253–08–08, DFG priority program 1253 “Optimization with PDEs”, 2009.Google Scholar
  9. 9.
    K. Eriksson, D. Estep, P. Hansbo, and C. Johnson: Computational Differential Equations. Cambridge University Press, Cambridge, 1996.zbMATHGoogle Scholar
  10. 10.
    K. Eriksson, C. Johnson, and V. Thomée: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal. 19 (1985), 611–643.zbMATHGoogle Scholar
  11. 11.
    R. Falk: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44 (1973), 28–47.CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    The finite element toolkit Gascoigne. http://www.gascoigne.uni-hd.de.
  13. 13.
    T. Geveci: On the approximation of the solution of an optimal control problem governed by an elliptic equation. M2AN Math. Model. Numer. Anal. 13 (1979), 313–328.zbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Hinze: A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005), 45–61.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. Hinze and M. Vierling: Variational discretization and semi-smooth Newton methods; implementation, convergence and globalization in PDE constrained optimization with control constraints (2010). Submitted. Preprint 2009-15, Hamburger Beiträge zur Angewandten Mathematik (2009).Google Scholar
  16. 16.
    K. Kunisch and A. Rösch: Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002), 321–334.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    I. Lasiecka and K. Malanowski: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7 (1978), 21–36.zbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Luskin and R. Rannacher: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982), 93–113.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    K. Malanowski: Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems. Appl. Math. Optim. 8 (1981), 69–95.CrossRefMathSciNetGoogle Scholar
  20. 20.
    R.S. McNight and W.E. Bosarge, jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11 (1973), 510–524.CrossRefGoogle Scholar
  21. 21.
    D. Meidner, R. Rannacher, and B. Vexler: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM J. Control Optim. (2011). Accepted.Google Scholar
  22. 22.
    D. Meidner and B. Vexler: Adaptive space-time finite element methods for parabolic optimization problems. SIAM J. Control Optim. 46 (2007), 116–142.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part I: Problems without control constraints. SIAM J. Control Optim. 47 (2008), 1150–1177.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    D. Meidner and B. Vexler: A priori error estimates for space-time finite element approximation of parabolic optimal control problems. Part II: Problems with control constraints. SIAM J. Control Optim. 47 (2008), 1301–1329.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    C. Meyer and A. Rösch: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43 (2004), 970–985.CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    R. Rannacher: 𝐿 -Stability estimates and asymptotic error expansion for parabolic finite element equations. Bonner Math. Schriften 228 (1991), 74–94.MathSciNetGoogle Scholar
  27. 27.
    RoDoBo. A C++ library for optimization with stationary and nonstationary PDEs with interface to Gascoigne [12]. http://www.rodobo.uni-hd.de.
  28. 28.
    A. Rösch: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. Anwend. 23 (2004), 353–376.CrossRefzbMATHGoogle Scholar
  29. 29.
    A. Rösch and B. Vexler: Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing. SIAM J. Numer. Anal. 44 (2006), 1903–1920.CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, volume 25 of Spinger Ser. Comput. Math. Springer, Berlin, 1997.zbMATHGoogle Scholar
  31. 31.
    R. Winther: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. (4) 117 (1978), 173–206.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Mathematische OptimierungTechnische Universität München Fakultät für MathematikGarching b. MünchenGermany

Personalised recommendations