Advertisement

A Posteriori Error Representations for Elliptic Optimal Control Problems with Control and State Constraints

  • Andreas GüntherEmail author
  • Michael Hinze
  • Moulay Hicham Tber
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)

Abstract

In this work we develop an adaptive algorithm for solving elliptic optimal control problems with simultaneously appearing state and control constraints. Building upon the concept proposed in [9] the algorithm applies a Moreau-Yosida regularization technique for handling state constraints. The state and co-state variables are discretized using continuous piecewise linear finite elements while a variational discretization concept is applied for the control. To perform the adaptive mesh refinement cycle we derive local error representations which extend the goal-oriented error approach to our setting. The performance of the overall adaptive solver is demonstrated by a numerical example.

Keywords

Elliptic optimal control problem control constraints state constraints goal-oriented adaptivity error estimates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001), 1–102.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    O. Benedix and B. Vexler, A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints. Comput. Optim. Appl. 44 (2009), 3–25.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch, A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000), 495–521.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Bergounioux and K. Kunisch, On the structure of the Lagrange multiplier for state-constrained optimal control problems. Syst. Control Lett. 48 (2002), 169–176.CrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Bergounioux and K. Kunisch, Primal-dual strategy for state-constrained optimal control problems. Comput. Optim. Appl. 22 (2002), 193–224.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993), 993–1006.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986), 1309–1318.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    K. Deckelnick and M. Hinze, A finite element approximation to elliptic control problems in the presence of control and state constraints. Hamburger Beiträge zur Angewandten Mathematik, Universität Hamburg, preprint No. HBAM2007-01 (2007).Google Scholar
  9. 9.
    A. Günther and M. Hinze, A posteriori error control of a state constrained elliptic control problem. J. Numer. Math. 16 (2008), 307–322.CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Günther and M.H. Tber, A goal-oriented adaptive Moreau-Yosida algorithm for control- and state-constrained elliptic control problems. DFG Schwerpunktprogramm 1253, preprint No. SPP1253-089 (2009).Google Scholar
  11. 11.
    Michael Hintermüller and Michael Hinze. Moreau-yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment. SIAM J. Numerical Analysis, 47:1666–1683, 2009.CrossRefzbMATHGoogle Scholar
  12. 12.
    M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47 (2008), 1721–1743.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Hintermüller and R.H.W. Hoppe, Goal-oriented adaptivity in pointwise state constrained optimal control of partial differential equations. SIAM J. Control Optim. 48 (2010), 5468–5487.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2003), 865–888.CrossRefzbMATHGoogle Scholar
  15. 15.
    M. Hintermüller and K. Kunisch, Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45 (2006), 1198–1221.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Hintermüller and K. Kunisch, Pde-constrained optimization subject to pointwise constraints on the control, the state and its derivative. SIAM J. Optim. 20 (2009), 1133–1156.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    M. Hinze, A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30 (2005), 45–63.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    R.H. Hoppe and M. Kieweg, Adaptive finite element methods for mixed control-state constrained optimal control problems for elliptic boundary value problems. Comput. Optim. Appl. 46 (2010), 511–533.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006), 209–228.CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Schiela, State constrained optimal control problems with states of low regularity. SIAM J. Control Optim. 48 (2009), 2407–2432.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A. Schiela and A. Günther, An interior point algorithm with inexact step computation in function space for state constrained optimal control. 35 pp. To appear in Numerische Mathematik, doi:10.1007/s00211-011-0381-4, 2011.Google Scholar
  22. 22.
    A. Shapiro, On uniqueness of Lagrange multipliers in optimization problems subject to cone constraints. SIAM J. Optim. 7 (1997), 508–518.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Optim. 15 (2005), 616–634.CrossRefzbMATHGoogle Scholar
  24. 24.
    B. Vexler and W. Wollner, Adaptive finite elements for elliptic optimization problems with control constraints. SIAM J. Control Optim. 47 (2008), 509–534.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    W. Vogt, Adaptive Verfahren zur numerischen Quadratur und Kubatur. IfMath TU Ilmenau, preprint No. M 1/06 (2006).Google Scholar
  26. 26.
    M. Weiser, Interior point methods in function space. SIAM J. Control Optim. 44 (2005), 1766–1786.CrossRefMathSciNetGoogle Scholar
  27. 27.
    W. Wollner, A posteriori error estimates for a finite element discretization of interior point methods for an elliptic optimization problem with state constraints. Comput. Optim. Appl. 47 (2010), 133–159.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Andreas Günther
    • 1
    Email author
  • Michael Hinze
    • 2
  • Moulay Hicham Tber
    • 3
  1. 1.Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)Berlin-DahlemGermany
  2. 2.University of HamburgHamburgGermany
  3. 3.Department of mathematicsFaculty of Science and TechnologyBeni-MellalMorocco

Personalised recommendations