Non-parametric Aerodynamic Shape Optimization

  • Nicolas GaugerEmail author
  • Caslav Ilic
  • Stephan Schmidt
  • Volker Schulz
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)


Numerical schemes for large scale shape optimization are considered. Exploiting the structure of shape optimization problems is shown to lead to very efficient optimization methods based on non-parametric surface gradients in Hadamard form. The resulting loss of regularity is treated using higher-order shape Newton methods where the shape Hessians are studied using operator symbols. The application ranges from shape optimization of obstacles in an incompressible Navier–Stokes fluid to super- and transonic airfoil and wing optimizations.


Shape optimization one-shot shape SQP methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Arian and S. Ta’Asan. Analysis of the Hessian for aerodynamic optimization: Inviscid flow. ICASE, 96–28, 1996.Google Scholar
  2. 2.
    E. Arian and V.N. Vatsa. A preconditioning method for shape optimization governed by the Euler equations. ICASE, 98–14, 1998.Google Scholar
  3. 3.
    M. Bendsøe. Methods for Optimization of structural topology, shape and material. Springer, 1995.Google Scholar
  4. 4.
    C. Castro, C. Lozano, F. Palacios, and E. Zuazua. Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA, 45(9):2125–2139, 2007.CrossRefGoogle Scholar
  5. 5.
    K.-T. Cheng and N. Olhoff. An investigation concerning optimal design of solid elastic plates. International Journal of Solids and Structures, 17:305–323, 1981.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    M.C. Delfour and J.-P. Zolésio. Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Advances in Design and Control. SIAM Philadelphia, 2001.Google Scholar
  7. 7.
    O. Enoksson. Shape Optimization in compressible inviscid flow. Licentiate thesis, Linköpings Universitet, S-581 83 Linköping, Sweden, 2000.Google Scholar
  8. 8.
    K. Eppler. Efficient Shape Optimization Algorithms for Elliptic Boundary Value Problems. Habilitation thesis, Technische Universität Chemnitz, Germany, 2007.Google Scholar
  9. 9.
    K. Eppler and H. Harbrecht. A regularized Newton method in electrical impedance tomography using shape Hessian information. Control and Cybernetics, 34(1):203–225, 2005.zbMATHMathSciNetGoogle Scholar
  10. 10.
    K. Eppler, S. Schmidt, V. Schulz, and C. Ilic. Preconditioning the pressure tracking in fluid dynamics by shape Hessian information. Journal of Optimization Theory and Applications, 141(3):513–531, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    N. Gauger. Das Adjungiertenverfahren in der aerodynamischen Formoptimierung. PhD thesis, TU Braunschweig, 2003.Google Scholar
  12. 12.
    I. Gherman. Approximate Partially Reduced SQP Approaches for Aerodynamic Shape Optimization Problems. PhD thesis, University of Trier, 2008.Google Scholar
  13. 13.
    I. Gherman and V. Schulz. Preconditioning of one-shot pseudo-timestepping methods for shape optimization. PAMM, 5(1):741–742, 2005.CrossRefGoogle Scholar
  14. 14.
    A. Griewank. Projected Hessians for preconditioning in one-step one-shot design optimization. Nonconvex Optimization and its application, 83:151–172, 2006.CrossRefMathSciNetGoogle Scholar
  15. 15.
    W. Haack. Geschosformen kleinsten Wellenwiderstandes. Bericht der Lilienthal-Gesellschaft, 136(1):14–28, 1941.Google Scholar
  16. 16.
    R.M. Hicks and P.A. Henne. Wing design by numerical optimization. Journal of Aircraft, 15:407–412, 1978.CrossRefGoogle Scholar
  17. 17.
    M. Hintermüller and W. Ring. An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. Journal of Mathematical Imaging and Vision, 20(1–2):19–42, 2004.CrossRefMathSciNetGoogle Scholar
  18. 18.
    M. Hintermüller and W. Ring. A second-order shape optimization approach for image segmentation. SIAM Journal on Applied Mathematics, 64(2):442–467, 2004.CrossRefGoogle Scholar
  19. 19.
    A. Iollo, G. Kuruvila, and S. Ta’Asan. Pseudo-time method for optimal shape design using Euler equation. Technical Report 95–59, ICASE, 1995.Google Scholar
  20. 20.
    O. Pironneau. On optimum profiles in stokes flow. Journal of Fluid Mechanics, 59(1):117–128, 1973.CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    S. Rusinkiewicz. Estimating curvatures and their derivatives on triangle meshes. In Symposium on 3D Data Processing, Visualization, and Transmission, 2004.Google Scholar
  22. 22.
    S. Schmidt. Efficient Large Scale Aerodynamic Design Based on Shape Calculus. PhD thesis, University of Trier, Germany, 2010.Google Scholar
  23. 23.
    S. Schmidt, C. Ilic, N. Gauger, and V. Schulz. Shape gradients and their smoothness for practical aerodynamic design optimization. Technical Report Preprint-Nr.: SPP1253-10-03, DFG-SPP 1253, 2008 (submitted to OPTE).Google Scholar
  24. 24.
    S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hessians with application in CFD. SIAM Journal on Control and Optimization, 48(4):2562–2580, 2009.CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    S. Schmidt and V. Schulz. Shape derivatives for general objective functions and the incompressible Navier-Stokes equations. Control and Cybernetics, 2010 (to appear issue 3/2010).Google Scholar
  26. 26.
    V. Schulz and I. Gherman. One-shot methods for aerodynamic shape optimization. In N. Kroll, D. Schwamborn, K. Becker, H. Rieger, and F. Thiele, editors, MEGADESIGN and MegaOpt – German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, volume 107 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 207–220. Springer, 2009.Google Scholar
  27. 27.
    J. Sokolowski and J.-P. Zolésio. Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, 1992.Google Scholar
  28. 28.
    P. Weinerfeld. Aerodynamic optimization using control theory and surface mesh points as control variables. Technical Report FAU-97.044, SAAB Aerospace, Linköping, 1997.Google Scholar
  29. 29.
    P. Weinerfeld. Alternative gradient formulation for aerodynamic shape optimization based on the Euler equations. Technical Report FF-2001-0042, SAAB Aerospace, Linköping, 2001.Google Scholar
  30. 30.
    P. Weinerfeld. Gradient formulation for aerodynamic shape optimization based on the Navier-Stokes equations. Technical Report FF-2001-0043, SAAB Aerospace, Linköping, 2001.Google Scholar
  31. 31.
    P. Weinerfeld. Gradient formulations for aerodynamic shape optimization based on Euler equations. Technical Report FF-2001-0041, SAAB Aerospace, Linköping, 2001.Google Scholar
  32. 32.
    P. Weinerfeld. Some theorems related to the variation of metric terms and integrals. Technical Report FF-2001-0040, SAAB Aerospace, Linköping, 2001.Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Nicolas Gauger
    • 1
    Email author
  • Caslav Ilic
    • 2
  • Stephan Schmidt
    • 3
  • Volker Schulz
    • 3
  1. 1.Department of Mathematics and CCESRWTH Aachen UniversityAachenGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt, e.V.BraunschweigGermany
  3. 3.TrierGermany

Personalised recommendations