Advertisement

Stabilization of Incompressible Flow Problems by Riccati-based Feedback

  • Eberhard BänschEmail author
  • Peter Benner
Chapter
Part of the International Series of Numerical Mathematics book series (ISNM, volume 160)

Abstract

We consider optimal control-based boundary feedback stabilization of flow problems for incompressible fluids. We follow an analytical approach laid out during the last years in a series of papers by Barbu, Lasiecka, Triggiani, Raymond, and others. They have shown that it is possible to stabilize perturbed flows described by Navier-Stokes equations by designing a stabilizing controller based on a corresponding linear-quadratic optimal control problem. For this purpose, algorithmic advances in solving the associated algebraic Riccati equations are needed and investigated here. The computational complexity of the new algorithms is essentially proportional to the simulation of the forward problem.

Keywords

Flow control feedback Navier-Stokes equations Riccati equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raymond, J.P.: Local boundary feedback stabilization of the Navier-Stokes equations. In: Control Systems: Theory, Numerics and Applications, Rome, 30 March–1 April 2005, Proceedings of Science. SISSA (2005). URL http://pos.sissa.it
  2. 2.
    Raymond, J.P.: Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J. Control Optim. 45(3), 790–828 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Raymond, J.P.: Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl. (9) 87(6), 627–669 (2007)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barbu, V.: Feedback stabilization of the Navier-Stokes equations. ESAIM: Control Optim. Calc. Var. 9, 197–206 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Barbu, V., Triggiani, R.: Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53(5), 1443–1494 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barbu, V., Lasiecka, I., Triggiani, R.: Tangential boundary stabilization of Navier-Stokes equations. Mem. Amer. Math. Soc. 181(852), x+128 (2006)MathSciNetGoogle Scholar
  7. 7.
    Badra, M.: Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J. Control Optim. 48(3), 1797–1830 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fernández-Cara, Y., Guerrero, S., Imanuvilov, O., Puel, J.P.: Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl., IX. Sér. 83(12), 1501–1542 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Fursikov, A.: Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete Contin. Dyn. Syst. 10(1–2), 289–314 (2004)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Barbu, V., Sritharan, S.S.: 𝐻 -control theory of fluid dynamics. Proc. R. Soc. Lond. A 454, 3009–3033 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    King, B., Ou, Y.R.: Nonlinear dynamic compensator design for flow control in a driven cavity. In: Proc. 34th IEEE Conf. Decision Contr., pp. 3741–3746 (1995)Google Scholar
  12. 12.
    Aamo, O.M., Krstic, M.: Flow Control by Feedback. Stabilization and Mixing. Springer-Verlag, London (2003)Google Scholar
  13. 13.
    Gunzburger, M.: Perspectives in Flow Control and Optimization. SIAM Publications, Philadelphia, PA (2003)zbMATHGoogle Scholar
  14. 14.
    Hinze, M.: Instantaneous closed loop control of the Navier-Stokes system. SIAM J. Control Optim. 44(2), 564–583 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hinze, M., Matthes, U.: Optimal and model predictive control of the Boussinesq approximation. In: Control of Coupled Partial Differential Equations, Internat. Ser. Numer. Math., vol. 155, pp. 149–174. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  16. 16.
    Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs. A course on backstepping designs, Advances in Design and Control, vol. 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)Google Scholar
  17. 17.
    Banks, H., Ito, K.: A numerical algorithm for optimal feedback gains in highdimensional linear quadratic regulator problems. SIAM J. Cont. Optim. 29(3), 499–515 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Banks, H., Kunisch, K.: The linear regulator problem for parabolic systems. SIAM J. Cont. Optim. 22, 684–698 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Lasiecka, I., Triggiani, R.: Differential and Algebraic Riccati Equations with Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. No. 164 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin (1991)Google Scholar
  20. 20.
    Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I. Abstract Parabolic Systems. Cambridge University Press, Cambridge, UK (2000)Google Scholar
  21. 21.
    Ito, K.: Finite-dimensional compensators for infinite-dimensional systems via Galerkin-type approximation. SIAM J. Cont. Optim. 28, 1251–1269 (1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    Morris, K.: Design of finite-dimensional controllers for infinite-dimensional systems by approximation. J. Math. Syst., Estim., and Control 4, 1–30 (1994)Google Scholar
  23. 23.
    Raymond, J.P.: Boundary feedback stabilization of the incompressible Navier-Stokes equations. Talk at TC7 IFIP Conference, Torino, July 18-22, 2005Google Scholar
  24. 24.
    Benner, P.: Computational methods for linear-quadratic optimization. Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II No. 58, 21–56 (1999)Google Scholar
  25. 25.
    Datta, B.: Numerical Methods for Linear Control Systems. Elsevier Academic Press (2004)Google Scholar
  26. 26.
    Sima, V.: Algorithms for Linear-Quadratic Optimization, Pure and Applied Mathematics, vol. 200. Marcel Dekker, Inc., New York, NY (1996)Google Scholar
  27. 27.
    Fursikov, A., Gunzburger, M., Hou, L.: Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case. SIAM J. Cont. Optim. 43(6), 2191–2232 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Benner, P., Saak, J.: Linear-quadratic regulator design for optimal cooling of steel profiles. Tech. Rep. SFB393/05-05, Sonderforschungsbereich 393 Parallele Numerische Simulation für Physikund Kontinuumsmechanik, TU Chemnitz, 09107 Chemnitz, FRG (2005). URL http://www.tu-chemnitz.de/sfb393
  29. 29.
    Kroller, M., Kunisch, K.: Convergence rates for the feedback operators arising in the linear quadratic regulator problem governed by parabolic equations. SIAM J. Numer. Anal. 28(5), 1350–1385 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Casas, E., Mateos, M., Raymond, J.P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46(3), 952–982 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Lin. Alg. Appl. 15, 755–777 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Benner, P.: Efficient algorithms for large-scale quadratic matrix equations. Proc. Appl. Math. Mech. 1(1), 492–495 (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Benner, P.: Solving large-scale control problems. IEEE Control Systems Magazine 14(1), 44–59 (2004)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Letters 107, 87–90 (1988)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: with applications in incompressible fluid dynamics. Oxford University Press, Oxford (2005)zbMATHGoogle Scholar
  37. 37.
    Heinkenschloss, M., Sorensen, D., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30(2), 1038–1063 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Rosen, I., Wang, C.: A multi-level technique for the approximate solution of operator Lyapunov and algebraic Riccati equations. SIAM J. Numer. Anal. 32(2), 514–541 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Grasedyck, L.: Nonlinear multigrid for the solution of large-scale Riccati equations in low-rank and -matrix format. Numer. Lin. Alg. Appl. 15, 779–807 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Grasedyck, L., Hackbusch, W., Khoromskij, B.: Solution of large scale algebraic matrix Riccati equations by use of hierarchical matrices. Computing 70, 121–165 (2003)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Benner, P., Faßbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75–111 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Jaimoukha, I., Kasenally, E.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Numer. Anal. 31, 227–251 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Jbilou, K., Riquet, A.: Projection methods for large Lyapunov matrix equations. Linear Algebra Appl. 415(2-3), 344–358 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Bänsch, E.: Simulation of instationary, incompressible flows. Acta Math. Univ. Comenianae LXVII(1), 101–114 (1998)Google Scholar
  45. 45.
    Bänsch, E., Benner, P., Heubner, A.: Riccati-based feedback stabilization of flow problems. In: 23rd IFIP TC 7 Conference, July 23–27, 2007, Cracow, Poland (2007)Google Scholar
  46. 46.
    Barrachina, S., Benner, P., Quintana-Ortí, E.: Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function. Numer. Algorithms 46(4), 351–368 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Baur, U., Benner, P.: Efficient solution of algebraic Bernoulli equations using Hmatrix arithmetic. In: K. Kunisch, G. Of, O. Steinbach (eds.) Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2007, the 7th European Conference on Numerical Mathematics and Advanced Applications, Graz, Austria, September 2007, pp. 127–134. Springer-Verlag, Heidelberg (2008)CrossRefGoogle Scholar
  48. 48.
    Mehrmann, V.: The Autonomous Linear Quadratic Control Problem, Theory and Numerical Solution. No. 163 in Lecture Notes in Control and Information Sciences. Springer-Verlag, Heidelberg (1991)Google Scholar
  49. 49.
    Benner, P., Stykel, T.: Numerical algorithms for projected generalized Riccati equations. In preparationGoogle Scholar
  50. 50.
    Benner, P., Hernández, V., Pastor, A.: On the Kleinman iteration for nonstabilizable systems. Math. Control, Signals, Sys. 16, 76–93 (2003)zbMATHGoogle Scholar
  51. 51.
    Morris, K., Navasca, C.: Solution of algebraic Riccati equations arising in control of partial differential equations. In: Control and Boundary Analysis, Lect. Notes Pure Appl. Math., vol. 240, pp. 257–280. Chapman & Hall/CRC, Boca Raton, FL (2005)Google Scholar
  52. 52.
    Feitzinger, F., Hylla, T., Sachs, E.: Inexact Kleinman-Newton method for Riccati equations. SIAM J. Matrix Anal. Appl. 31, 272–288 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Varga, A.: On stabilization methods of descriptor systems. Sys. Control Lett. 24, 133–138 (1995)CrossRefzbMATHGoogle Scholar
  54. 54.
    Armstrong, E.: An extension of Bass’ algorithm for stabilizing linear continuous constant systems. IEEE Trans. Automat. Control AC–20, 153–154 (1975)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Benner, P.: Partial stabilization of descriptor systems using spectral projectors. In: S. Bhattacharyya, R. Chan, P. Van Dooren, V. Olshevsky, A. Routray (eds.) Numerical Linear Algebra in Signals, Systems and Control, Lecture Notes in Electrical Engineering, vol. 80, pp. 55–76. Springer-Verlag, Dordrecht (2011)CrossRefGoogle Scholar
  56. 56.
    Benner, P., Li, R.C., Truhar, N.: On the ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Benner, P., Saak, J.: A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati Equations. Preprint SPP1253–090, DFG Priority Programme Optimization with Partial Differential Equations (2010). URL http://www.am.unierlangen.de/home/spp1253/wiki/index.php/Preprints

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Lehrstuhl Angewandte Mathematik IIIFAU ErlangenErlangenGermany
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations