The Mathematics of Darwin’s Theory of Evolution: 1859 and 150 Years Later

Part of the Mathematics and Biosciences in Interaction book series (MBI)


A mathematical formulation of Darwin’s theory of evolutionary optimization through variation and selection is derived in terms of conventional ODEs that can be interpreted as chemical kinetics of evolution. Variation in form of mutation and recombination operates on genotypes being DNA or RNA sequences, whereas phenotypes, which are represented by organisms or molecular structures, are the target of selection. The impact of recombination on optimization is briefly sketched. Differential equations modelling selection in populations with correct replication and mutation are derived from the molecular mechanisms of polynucleotide replication. The analysis of these ODEs reveals restrictions of the optimization principle caused by mutation. Error propagation over generations sets a limit to mutation rates in evolution, which manifests itself in the form of a phase transition-like phenomenon characterized as error threshold. Conditions on fitness landscapes for the occurrence of error thresholds derived from numerical investigations are presented: Smooth fitness landscapes show no error thresholds but gradual transitions, sufficiently steep landscapes and rugged landscapes sustain error thresholds. Sharp transitions are also found with realistic landscapes combining ruggedness and neutrality. Lethal mutants may lead to extinction of populations and set another upper limit to mutation rates in form of an extinction threshold through lethal mutagenesis.


Error threshold genotype-phenotype mapping lethal mutagenesis population dynamics neutrality quasispecies sequence space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Darwin, On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. John Murray, London, 1859.Google Scholar
  2. 2.
    G. Mendel, Versuche ¨uber Pflanzenhybriden. (Experiments relating to plant hybridization). Verh. Naturforsch. Ver. Br¨unn 4 (1866), 3–17.Google Scholar
  3. 3.
    S. Spiegelman, An approach to the experimental analysis of precellular evolution. Quart.Rev. Biophys. 4 (1971), 213–253.CrossRefGoogle Scholar
  4. 4.
    G.F. Joyce, Directed evolution of nucleic acid enzymes. Annu. Rev.Biochem. 73 (2004), 791–836.CrossRefGoogle Scholar
  5. 5.
    S. Klussmann (ed.), The Aptamer Handbook. Functional Oligonucleotides and Their Applications. Wiley-VCh Verlag, Weinheim, DE, 2006.Google Scholar
  6. 6.
    S. Brakmann and K. Johnsson (eds.), Directed Molecular Evolution of Proteins or How to Improve Enzymes for Biocatalysis. Wiley-VCH, Weinheim, DE, 2002.Google Scholar
  7. 7.
    C. J¨ackel, P. Kast, and D. Hilvert, Protein design by directed evolution. Annu. Rev. Biophys. 37 (2008), 153–173.Google Scholar
  8. 8.
    S.J. Wrenn and P.B. Harbury, Chemical evolution as a tool for molecular discovery. Annu.Rev.Biochem. 76 (2007), 331–349.CrossRefGoogle Scholar
  9. 9.
    L.E. Sigler, Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation. Springer-Verlag, New York, 2002, a translation of Leonardo Pisano’s book of 1202 from Latin into modern English.Google Scholar
  10. 10.
    P. Singh, The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica 12 (1985), 229–244.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D.E. Knuth, The Art of Computer Programming. Vol. I: Fundamental Algorithms. Third edition, Addison-Wesley Publishing Co., Reading, MA, 1997.Google Scholar
  12. 12.
    R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics. Second edition, Addison-Wesley Publishing Co., Reading, MA, 1994.Google Scholar
  13. 13.
    R.A. Dunlap, The Golden Ratio and Fibonacci Numbers. World Sceintific, Singapore, 1997.Google Scholar
  14. 14.
    J. Binet, M´emoire sur l’int´egration des ´equations lin´eaires aux diff´erences finies, d’un ordre quelconque, `a coefficients variables. Comptes Rendue Hebdomadaires des S´eances de l’Acad´emie des Sciences (Paris) 17 (1843), 559–567.Google Scholar
  15. 15.
    L. Euler, Theoremata arithmetica nova methodo demonstrata. Novi Comentarii Scientiarum Imperialis Petropolitanæ 8 (1760), 74–104, reprinted in Euler’s Commentationes Arithmeticæ Collectæ, Vol. 1, 274–286 and in Euler’s Opera Omnia, Series 1, Vol. 2, 531–555.Google Scholar
  16. 16.
    T.R. Malthus, An Essay on the Principle of Population, as it Affects the Future Improvement of Society, with Remarks on the Speculations of Mr Godwin, M. Condorcet and Other Writers. John Murray, London, 1798.Google Scholar
  17. 17.
    L. Euler, Introductio in Analysin Infinitorum, 1748. English Translation: John Blanton, Introduction to Analysis of the Infinite, volume I and II. Springer-Verlag, Berlin, 1988.Google Scholar
  18. 18.
    P.F. Verhulst, Notice sur la loi que la population pursuit dans son accroisement. Corresp.Math. Phys. 10 (1838), 113–121.Google Scholar
  19. 19.
    P. Verhulst, Recherches math´ematiques sur la loi d’accroisement de la population. Nouv.M´em. de l’Acad´emie Royale des Sci. et Belles-Lettres de Bruxelles 18 (1845), 1–41.Google Scholar
  20. 20.
    P. Verhulst, Deuxi`eme m´emoire sur la loi d’accroisement de la population. M´em. de l’Acad´emie Royale des Sci., des Lettres et de Beaux-Arts de Belgique 20 (1847), 1–32.Google Scholar
  21. 21.
    P.E. Phillipson and P. Schuster, Modeling by Nonlinear Differential Equations. Dissipative and Conservative Processes, volume 69 ofWorld Scientific Series on Nonlinear Science A. World Scientific, Singapore, 2009.Google Scholar
  22. 22.
    D. Zwillinger, Handbook of Differential Equations. Third edition, Academic Press, San Diego, CA, 1998.Google Scholar
  23. 23.
    M. Eigen and P. Schuster, The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle. Naturwissenschaften 65 (1978), 7–41.Google Scholar
  24. 24.
    P. Schuster and K. Sigmund, Replicator dynamics. J. Theor. Biol. 100 (1983), 533– 538.MathSciNetGoogle Scholar
  25. 25.
    R.A. Fisher, The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 1930.Google Scholar
  26. 26.
    J.J. Bull, L. Ancel Myers, and M. Lachmann, Quasispecies made simple. PLoS Comp.Biol. 1 (2005), 450–460.Google Scholar
  27. 27.
    J.J. Bull, R. Sanju´an, and C.O. Wilke, Theory for lethal mutagenesis for viruses. J.Virology 81 (2007), 2930–2939.Google Scholar
  28. 28.
    W.M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York, 1974.Google Scholar
  29. 29.
    S. Shahshahani, A new mathematical framework for the study of linkage and selection. Mem. Am. Math. Soc. 211 (1979), 34.MathSciNetGoogle Scholar
  30. 30.
    P. Schuster and K. Sigmund, Dynamics of evolutionary optimization. Ber. Bunsenges. Phys. Chem. 89 (1985), 668–682.Google Scholar
  31. 31.
    W.J. Ewens, Mathematical Population Genetics, volume 9 of Biomathematics Texts. Springer-Verlag, Berlin, 1979.Google Scholar
  32. 32.
    J.B. Schnog, A.J. Duits, F.A.J. Muskiet, H. ten Cate, R.A. Rojer, and D.P.M. Brandjes, Sickle cell disease: A general overview. The Netherlands Journal of Medicine 62 (2004), 364–374.Google Scholar
  33. 33.
    G.A. Barabino, M.O. Platt, and D.K. Kaul, Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 12 (2010), 345–367.CrossRefGoogle Scholar
  34. 34.
    G. Price, Fisher’s “Fundamental Theorem” made clear. Ann. Hum. Genet. 36 (1972), 129–140.CrossRefGoogle Scholar
  35. 35.
    A.W. Edwards, The fundamental theorem of natural selection. Biological Reviews 69 (1994), 443–474.CrossRefGoogle Scholar
  36. 36.
    S. Okasha, Fisher’s fundamental theorem of natural selection – A philosophical analysis. Brit. J. Phil. Sci. 59 (2008), 319–351.zbMATHCrossRefGoogle Scholar
  37. 37.
    F. Schl¨ogl, Chemical reaction models for non-equilibrium phase transitions. Z.Physik 253 (1972), 147–161.Google Scholar
  38. 38.
    G. von Kiedrowski, B. Wlotzka, J. Helbig, M. Matzen, and S. Jordan, Parabolic growth of a self-replicating hexanucleotide bearing a 3_-5_-phosphoamidate linkage. Angew. Chem. Internat. Ed. 30 (1991), 423–426.CrossRefGoogle Scholar
  39. 39.
    B.R.M. Stadler, P.F. Stadler, G.P. Wagner, and W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change. J.Theor. Biol. 213 (2001), 241–274.CrossRefMathSciNetGoogle Scholar
  40. 40.
    C.K. Biebricher, M. Eigen, and J. William C. Gardiner, Kinetics of RNA replication. Biochemistry 22 (1983), 2544–2559.Google Scholar
  41. 41.
    J.D. Watson and F.H.C. Crick, A structure for deoxyribose nucleic acid. Nature 171 (1953), 737–738.CrossRefGoogle Scholar
  42. 42.
    H.F. Judson, The Eighth Day of Creation. The Makers of the Revolution in Biology. Jonathan Cape, London, 1979.Google Scholar
  43. 43.
    R.K. Saiki, D.H.G. amd Susanne Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich, Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239 (1988), 487–491.Google Scholar
  44. 44.
    C.K. Biebricher, M. Eigen, and J. William C. Gardiner, Kinetics of RNA replication: Plus-minus asymmetry and double-strand formation. Biochemistry 23 (1984), 3186– 3194.CrossRefGoogle Scholar
  45. 45.
    C.K. Biebricher, M. Eigen, and J. William C. Gardiner, Kinetics of RNA replication: Competition and selection among self-replicating RNA species. Biochemistry 24 (1985), 6550–6560.CrossRefGoogle Scholar
  46. 46.
    C.J. Thompson and J.L. McBride, On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21 (1974), 127–142.zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    B.L. Jones, R.H. Enns, and S.S. Rangnekar, On the theory of selection of coupled macromolecular systems. Bull. Math.Biol. 38 (1976), 15–28.zbMATHGoogle Scholar
  48. 48.
    R.W. Hamming, Coding and Information Theory. 2nd edition, Prentice-Hall, Englewood Cliffs, NJ, 1986.Google Scholar
  49. 49.
    E. Seneta, Non-negative Matrices and Markov Chains. Second edition, Springer- Verlag, New York, 1981.Google Scholar
  50. 50.
    P. Schuster and J. Swetina, Stationary mutant distribution and evolutionary optimization. Bull. Math.Biol. 50 (1988), 635–660.zbMATHMathSciNetGoogle Scholar
  51. 51.
    M. Eigen, Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58 (1971), 465–523.CrossRefGoogle Scholar
  52. 52.
    J.W. Drake, Rates of spontaneous mutation among RNA viruses. Proc. Natl. Acad. Sci. USA 90 (1993), 4171–4175.CrossRefGoogle Scholar
  53. 53.
    E. Domingo, ed., Virus entry into error catastrophe as a new antiviral strategy. Virus Research 107 (2005), 115–228.Google Scholar
  54. 54.
    J.W. Drake, B. Charlesworth, D. Charlesworth, and J.F. Crow, Rates of spontaneous mutation. Genetics 148 (1998), 1667–1686.Google Scholar
  55. 55.
    T. Wiehe, Model dependency of error thresholds: The role of fitness functions and contrasts between the finite and infinite sites models. Genet.Res.Camb. 69 (1997), 127–136.CrossRefGoogle Scholar
  56. 56.
    C.O. Wilke, J.L. Wang, C. Ofria, R.E. Lenski, and C. Adami, Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412 (2001), 331–333.CrossRefGoogle Scholar
  57. 57.
    M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge: University Press, UK, 1983.Google Scholar
  58. 58.
    G.P. Wagner and P. Krall, What is the difference between models of error thresholds and Muller’s ratchet. J. Math. Biol. 32 (1993), 33–44.zbMATHCrossRefGoogle Scholar
  59. 59.
    N. Takeuchi and P. Hogeweg, Error-thresholds exist in fitness landscapes with lethal mutants. BMC Evolutionary Biology 7 (2007), 15.CrossRefGoogle Scholar
  60. 60.
    H. Tejero, A. Mar´ın, and F. Moran, Effect of lethality on the extinction and on the error threshold of quasispecies. J. Theor. Biol. 262 (2010), 733–741.Google Scholar
  61. 61.
    K. Lucas and P. Roosen (eds.), Emergence, Analysis, and Evolution of Structures. Concepts and Strategies across Disciplines. Understanding Complex Systems, Springer-Verlag, Berlin, 2010.Google Scholar
  62. 62.
    S.A. Kauffman, The Origins of Order. Self-Organization and Selection in Evolution. Oxford University Press, New York, 1994.Google Scholar
  63. 63.
    W. Fontana and P. Schuster, Continuity in evolution. On the nature of transitions. Science 280 (1998), 1451–1455.Google Scholar
  64. 64.
    P. Schuster, Prediction of RNA secondary structures: From theory to models and real molecules. Reports on Progress in Physics 69 (2006), 1419–1477.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Institut für Theoretische ChemieUniversität WienWienAustria
  2. 2.Santa Fe InstituteSanta FeUSA

Personalised recommendations