When Do Optimisation Arguments Make Evolutionary Sense?

Part of the Mathematics and Biosciences in Interaction book series (MBI)


The simplest behaviour one can hope for when studying a mathematical model of evolution by natural selection is when evolution always maximises the value of some function of the trait under consideration, thus providing an absolute measure of fitness for the model. We survey the role of such models, known as optimisation models in the literature, and give some general results concerning the question of when a model turns out to be an optimisation model. The results presented vary from more abstract results with a game-theoretical flavour to more detailed considerations of life history models. We also give a number of concrete examples and discuss the role of optimisation models in the wider framework of adaptive dynamics.


Evolution by natural selection order relation rock-scissors-paper adaptive dynamics Evolutionarily Steady Strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Ewens, What changes has mathematics made to the Darwinian theory? In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 7–26, Birkh¨auser, Basel, 2011, This issue.Google Scholar
  2. 2.
    R. B¨urger, Some mathematical models in evolutionary genetics. In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 67–89, Birkh¨auser, Basel, 2011, This issue.Google Scholar
  3. 3.
    J.A.J. Metz, Thoughts on the geometry of meso-evolution: Collecting mathematical elements for a post-modern synthesis. In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 193–231, Birkh¨auser, Basel, 2011, This issue.Google Scholar
  4. 4.
    J.A.J. Metz, Fitness. In S.E. J¨orgensen and B.D. Fath (eds.), Evolutionary Ecology, volume 2 of Encyclopedia of Ecology, 1599–1612, Elsevier, UK, 2008.Google Scholar
  5. 5.
    J.A.J. Metz and O. Diekmann (eds.), The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986.Google Scholar
  6. 6.
    J.A.J. Metz and A.M. de Roos, The role of physiologically structured population models within a general individual-based modeling perspective. In D. DeAngelis and L. Gross (eds.), Individual-based models and approaches in ecology: Concepts and Models, 88–111, Chapman & Hall, USA, 1992.Google Scholar
  7. 7.
    J.A.J. Metz, R.M. Nisbet, and S.A.H. Geritz, How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7 (1992), 198–202.CrossRefGoogle Scholar
  8. 8.
    R. Ferri`ere and M. Gatto, Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor. Popul. Biol. 48 (1995), 126–171.Google Scholar
  9. 9.
    P. Jagers, Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics-Applied, London, UK, 1975.Google Scholar
  10. 10.
    K.B. Athreya and S. Karlin, Branching processes with random environments I – extinction probabilities. Ann. Math. Stat. 42 (1971), 1499.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    K.B. Athreya and S. Karlin, Branching processes with random environments II – limit theorems. Ann. Math. Stat. 42 (1971), 1843.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Haccou, P. Jagers, and V.A. Vatutin, Branching Processes. Variation, Growth, and Extinction of Populations, volume 5 of Cambridge Studies in Adaptive Dynamics. Cambridge University Press, UK, 2005.Google Scholar
  13. 13.
    O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious-diseases in heterogeneous populations. J. Math. Biol. 28 (1990), 365–382.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    J.A.J. Metz and O. Leimar, A simple fitness proxy for structured populations with continuous traits, with case studies on the evolution of haplo-diploids and genetic dimorphisms (in press), J. Biol. Dyn.Google Scholar
  15. 15.
    F.J.A. Jacobs and J.A.J. Metz, On the concept of attractor for community-dynamical processes I: the case of unstructured populations. J. Math. Biol. 47 (2003), 222–234.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Gyllenberg, F.J.A. Jacobs, and J.A.J. Metz, On the concept of attractor for community-dynamical processes II: the case of structured populations. J. Math. Biol. 47 (2003), 235–248.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    I. Eshel, Evolutionary and continuous stability. J. Theor. Biol. 103 (1983), 99–111.CrossRefMathSciNetGoogle Scholar
  18. 18.
    P.D. Taylor, Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36 (1989), 125–143.zbMATHCrossRefGoogle Scholar
  19. 19.
    I. Eshel, On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34 (1996), 485–510.zbMATHCrossRefGoogle Scholar
  20. 20.
    S.A.H. Geritz, ´E. Kisdi, G. Meszena, and J.A.J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12 (1998), 35–57.Google Scholar
  21. 21.
    O. Leimar, Evolutionary change and Darwinian demons. Selection 2 (2001), 65–72.Google Scholar
  22. 22.
    O. Leimar, The evolution of phenotypic polymorphism: Randomized strategies versus evolutionary branching. Am. Nat. 165 (2005), 669–681.CrossRefGoogle Scholar
  23. 23.
    O. Leimar, Multidimensional convergence stability. Evol. Ecol. Res. 11 (2009), 191– 208.Google Scholar
  24. 24.
    O. Diekmann, M. Gyllenberg, and J.A.J. Metz, Steady-state analysis of structured population models. Theor. Popul. Biol. 63 (2003), 309–338.zbMATHCrossRefGoogle Scholar
  25. 25.
    I. Eshel and M.W. Feldman, Initial increase of new mutants and some continuity properties of ESS in two locus systems. Am. Nat. 124 (1984), 631–640.CrossRefGoogle Scholar
  26. 26.
    U. Liberman, External stability and ESS: criteria for initial increase of new mutant allele. J. Math. Biol. 26 (1988), 477–485.zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    S.P. Otto and P. Jarne, Evolution – haploids – hapless or happening? Science 292 (2001), 2441–2443.CrossRefGoogle Scholar
  28. 28.
    P. Hammerstein and R. Selten, Game theory and evolutionary biology. In R. Auman and S. Hart (eds.), Handbook of Game Theory With Economic Applications, Vol. II, volume 11 of Handbooks in Econom., 929–993, North-Holland, Amsterdam, 1994.Google Scholar
  29. 29.
    P. Hammerstein, Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34 (1996), 511–532.zbMATHCrossRefGoogle Scholar
  30. 30.
    F.J. Weissing, Genetic versus phenotypic models of selection: Can genetics be neglected in a long-term perspective? J. Math. Biol. 34 (1996), 533–555.zbMATHCrossRefGoogle Scholar
  31. 31.
    I. Eshel and M.W. Feldman, Optimization and evolutionary stability under shortterm and long-term selection. In E. Sober and S. Orzack (eds.), Adaptationism and Optimality, 161–190, Cambridge University Press, Cambridge, UK, 2001.Google Scholar
  32. 32.
    I. Eshel, Short-term and long-term evolution. In U. Dieckmann and J.A.J. Metz (eds.), Elements of Adaptive Dynamics, Cambridge University Press, UK, In press.Google Scholar
  33. 33.
    J.A.J. Metz, S.D. Mylius, and O. Diekmann, When does evolution optimize? Evol. Ecol. Res. 10 (2008), 629–654.Google Scholar
  34. 34.
    M. Gyllenberg and R. Service, Necessary and sufficient conditions for the existence of an optimisation principle in evolution. J. Math. Biol. 62 (2011), 259–369.CrossRefMathSciNetGoogle Scholar
  35. 35.
    J.A.J. Metz, S.D. Mylius, and O. Diekmann, When does evolution optimise? on the relation between types of density dependence and evolutionarily stable life history parameters (1996), IIASA Working Paper WP-96-04.Google Scholar
  36. 36.
    R.G. Bowers, On the determination of evolutionary outcomes directly from the population dynamics of the resident (in press), J. Math. Biol.Google Scholar
  37. 37.
    C. Rueffler, J.A.J. Metz, and T.J.M. Van Dooren, What life cycle graphs can tell about the evolution of life histories (in revision), J. Math. Biol.Google Scholar
  38. 38.
    M. Heino, J.A.J. Metz, and V. Kaitala, The enigma of frequency-dependent selection. Trends Ecol. Evol. 13 (1998), 367–370.CrossRefGoogle Scholar
  39. 39.
    M.P. Hassell, J.H. Lawton, and R.M. May, Patterns of dynamical behaviour in singlespecies populations. J. Anim. Ecol. 45 (1976), 471–486.CrossRefGoogle Scholar
  40. 40.
    J.G. Kemeny and J.L. Snell, Finite Markov Chains. Van Nostrand, Princeton, NJ, 1960.Google Scholar
  41. 41.
    J.A.J. Metz, P.G.L. Klinkhamer, and T.J. de Jong, A different model to explain delayed germination. Evol. Ecol. Res. 11 (2009), 177–190.Google Scholar
  42. 42.
    R.M. Anderson and R.M. May, Coevolution of hosts and parasites. Parasitology 85 (1982), 411–426.Google Scholar
  43. 43.
    R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK, 1991.Google Scholar
  44. 44.
    U. Dieckmann and J.A.J. Metz, Surprising evolutionary predictions from enhanced ecological realism. Theor. Popul. Biol. 69 (2006), 263–281.zbMATHCrossRefGoogle Scholar
  45. 45.
    U. Dieckmann, Adaptive dynamics of pathogens-host interaction. In U. Dieckmann, J.A.J. Metz, M.W. Sabelis, and K. Sigmund (eds.), Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, 39–59, Cambridge University Press, UK, 2002.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute of Biology and Mathematical InstituteLeidenNetherlands
  3. 3.Evolution and Ecology ProgramIIASALaxenburgAustria

Personalised recommendations