Skip to main content

Thoughts on the Geometry of Meso-evolution: Collecting Mathematical Elements for a Postmodern Synthesis

  • Chapter
  • First Online:
The Mathematics of Darwin’s Legacy

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Abstract

Adaptive dynamics (AD) is a recently developed framework geared towards making the transition from micro-evolution to long-term evolution based on a time scale separation approximation. This assumption allows defining the fitness of a mutant as the rate constant of initial exponential growth of the mutant population in the environment created by the resident community dynamics. This definition makes that all resident types have fitness zero. If in addition it is assumed that mutational steps are small, evolution can be visualized as an uphill walk in a fitness landscape that keeps changing as a result of the evolution it engenders. The chapter summarises the main tools for analysing special eco-evolutionary models based on these simplifications. In addition it describes a number of general predictions that directly derive from the AD perspective a such, without making any further assumptions.

Mathematics Subject Classification (2000). 92D15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ewens, What changes has mathematics made to the Darwinian theory? In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 7–26, Birkh¨auser, Basel, 2011, This issue.

    Google Scholar 

  2. R. B¨urger, Some mathematical models in evolutionary genetics. In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 67–89, Birkh¨auser, Basel, 2011, This issue.

    Google Scholar 

  3. G.L. Jepsen, G.G. Simpson, and E. Mayr (eds.), Genetics, Paleontology and Evolution. Princeton University Press, USA, 1949.

    Google Scholar 

  4. E. Mayr, The Growth of Biological Thought: Diversity, Evolution, and Inheritance. Belknap Press, USA, 1982.

    Google Scholar 

  5. E. Mayr and W.B. Provine, The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press, USA, 1980.

    Google Scholar 

  6. R. Amundson, The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo. Cambridge: Cambridge University Press, UK, 2005.

    Google Scholar 

  7. W.D. Hamilton, Extraordinary sex ratios. Science 156 (1967), 477.

    Google Scholar 

  8. J. Maynard Smith and G.R. Price, The logic of animal conflict. Nature 246 (1973), 15–18.

    Google Scholar 

  9. R.A. Fisher, The Genetical Theory of Natural Selection. Clarendon Press, Oxford, 1930.

    Google Scholar 

  10. I. Eshel, M.W. Feldman, and A. Bergman, Long-term evolution, short-term evolution, and population genetic theory. J. Theor. Biol. 191 (1998), 391–396.

    Article  Google Scholar 

  11. I. Eshel, Short-term and long-term evolution. In U. Dieckmann and J.A.J. Metz (eds.), Elements of Adaptive Dynamics, Cambridge University Press, UK, In press.

    Google Scholar 

  12. T.L. Vincent and J.S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Cambridge University Press, UK, 2005.

    Google Scholar 

  13. P.A. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: an assessment of three methods. Ecol. Lett. 4 (2001), 166–175.

    Article  Google Scholar 

  14. R.A. Fisher, On the dominance ratio. Proc. Roy. Soc. Edin. 42 (1922), 321–341.

    Google Scholar 

  15. J.A.J. Metz, Fitness. In S.E. J¨orgensen and B.D. Fath (eds.), Evolutionary Ecology, volume 2 of Encyclopedia of Ecology, 1599–1612, Elsevier, UK, 2008.

    Google Scholar 

  16. J.A.J. Metz and O. Diekmann (eds.), The dynamics of physiologically structured populations, volume 68 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  17. J.A.J. Metz and A.M. de Roos, The role of physiologically structured population models within a general individual-based modeling perspective. In D. DeAngelis and L. Gross (eds.), Individual-based models and approaches in ecology: Concepts and Models, 88–111, Chapman & Hall, USA, 1992.

    Google Scholar 

  18. J.A.J. Metz, R.M. Nisbet, and S.A.H. Geritz, How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7 (1992), 198–202.

    Article  Google Scholar 

  19. R. Ferri`ere and M. Gatto, Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor. Popul. Biol. 48 (1995), 126–171.

    Google Scholar 

  20. P. Jagers, Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics-Applied, London, UK, 1975.

    Google Scholar 

  21. K.B. Athreya and S. Karlin, Branching processes with random environments I – extinction probabilities. Ann. Math. Stat. 42 (1971), 1499.

    Article  MATH  MathSciNet  Google Scholar 

  22. K.B. Athreya and S. Karlin, Branching processes with random environments II – limit theorems. Ann. Math. Stat. 42 (1971), 1843.

    Article  MATH  MathSciNet  Google Scholar 

  23. P. Haccou, P. Jagers, and V.A. Vatutin, Branching Processes. Variation, Growth, and Extinction of Populations, volume 5 of Cambridge Studies in Adaptive Dynamics. Cambridge University Press, UK, 2005.

    Google Scholar 

  24. F.J.A. Jacobs and J.A.J. Metz, On the concept of attractor for community-dynamical processes I: the case of unstructured populations. J. Math. Biol. 47 (2003), 222–234.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Gyllenberg, F.J.A. Jacobs, and J.A.J. Metz, On the concept of attractor for community-dynamical processes II: the case of structured populations. J. Math. Biol. 47 (2003), 235–248.

    Article  MATH  MathSciNet  Google Scholar 

  26. O. Diekmann, M. Gyllenberg, and J.A.J. Metz, Steady-state analysis of structured population models. Theor. Popul. Biol. 63 (2003), 309–338.

    Article  MATH  Google Scholar 

  27. M. Gyllenberg, J.A.J. Metz, and R. Service, When do optimisation arguments make evolutionary sense? In F.A.C.C. Chalub and J.F. Rodrigues (eds.), The Mathematics of Darwin’s Legacy, 233–268, Birkh¨auser, Basel, 2011, This issue.

    Google Scholar 

  28. I. Eshel, Evolutionary and continuous stability. J. Theor. Biol. 103 (1983), 99–111.

    Article  MathSciNet  Google Scholar 

  29. J.A.J. Metz, S.D. Mylius, and O. Diekmann, When does evolution optimize? Evol. Ecol. Res. 10 (2008), 629–654.

    Google Scholar 

  30. J.A.J. Metz, S.A.H. Geritz, G. Mesz´ena, F.J.A. Jacobs, and J.S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In Stochastic and spatial structures of dynamical systems (Amsterdam, 1995), Konink. Nederl. Akad. Wetensch. Verh. Afd. Natuurk. Eerste Reeks, 45, 183– 231, North-Holland, Amsterdam, 1996.

    Google Scholar 

  31. S.A.H. Geritz, ´E. Kisdi, G. Meszena, and J.A.J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12 (1998), 35–57.

    Google Scholar 

  32. U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes. J. Math. Biol. 34 (1996), 579–612.

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Champagnat, A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Their Appl. 116 (2006), 1127–1160.

    Article  MATH  MathSciNet  Google Scholar 

  34. S.A.H. Geritz, M. Gyllenberg, F.J.A. Jacobs, and K. Parvinen, Invasion dynamics and attractor inheritance. J. Math. Biol. 44 (2002), 548–560.

    Article  MATH  MathSciNet  Google Scholar 

  35. S.A.H. Geritz, Resident-invader dynamics and the coexistence of similar strategies. J. Math. Biol. 50 (2005), 67–82.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes: the Adaptive Dynamics Approach and its Applications. Princeton University Press, USA, 2008.

    Google Scholar 

  37. N. Champagnat, Convergence of adaptive dynamics n-morphic jump processes to the canonical equation and degenerate diffusion approximation. Preprint of the University of Nanterre (Paris 10) No. 03/7. (2003).

    Google Scholar 

  38. M. Durinx, J.A.J. Metz, and G. Meszena, Adaptive dynamics for physiologically structured population models. J. Math. Biol. 56 (2008), 673–742.

    Article  MATH  MathSciNet  Google Scholar 

  39. S. M´el´eard and V.C. Tran, Trait substitution sequence process and canonical equation for age-structured populations. J. Math. Biol. 58 (2009), 881–921.

    Google Scholar 

  40. J.A.J. Metz, Invasion fitness, canonical equations, and global invasion criteria for Mendelian populations. In U. Dieckmann and J.A.J. Metz (eds.), Elements of Adaptive Dynamics, Cambridge University Press, UK, In press.

    Google Scholar 

  41. J.A.J. Metz and C.C. de Kovel, The canonical equation of adaptive dynamics for diploid and haplo-diploid mendelian populations (in preperation).

    Google Scholar 

  42. T.J.M. Van Dooren, Adaptive dynamics with Mendelian genetics. In U. Dieckmann and J.A.J. Metz (eds.), Elements of Adaptive Dynamics, Cambridge University Press, UK, In press.

    Google Scholar 

  43. G. Mesz´ena, M. Gyllenberg, F.J. Jacobs, and J.A.J. Metz, Link between population dynamics and dynamics of Darwinian evolution. Phys. Rev. Lett. 95 (2005), 078105.

    Google Scholar 

  44. I. Salazar-Ciudad, On the origins of morphological disparity and its diverse developmental bases. Bioessays 28 (2006), 1112–1122.

    Article  Google Scholar 

  45. I. Salazar-Ciudad, Developmental constraints vs. variational properties: How pattern formation can help to understand evolution and development. J. Exp. Zool. Part B 306B (2006), 107–125.

    Google Scholar 

  46. O. Leimar, Evolutionary change and Darwinian demons. Selection 2 (2001), 65–72.

    Google Scholar 

  47. O. Leimar, The evolution of phenotypic polymorphism: Randomized strategies versus evolutionary branching. Am. Nat. 165 (2005), 669–681.

    Article  Google Scholar 

  48. O. Leimar, Multidimensional convergence stability. Evol. Ecol. Res. 11 (2009), 191– 208.

    Google Scholar 

  49. U. Dieckmann and M. Doebeli, On the origin of species by sympatric speciation. Nature 400 (1999), 354–357.

    Article  Google Scholar 

  50. S.A.H. Geritz and ´E. Kisdi, Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 267 (2000), 1671–1678.

    Google Scholar 

  51. M. Doebeli and U. Dieckmann, Speciation along environmental gradients. Nature 421 (2003), 259–264.

    Google Scholar 

  52. P.S. Pennings, M. Kopp, G. Meszena, U. Dieckmann, and J. Hermisson, An analytically tractable model for competitive speciation. Am. Nat. 171 (2008), E44–E71.

    Article  Google Scholar 

  53. J. Ripa, When is sympatric speciation truly adaptive? An analysis of the joint evolution of resource utilization and assortative mating. Evol. Ecol. 23 (2009), 31–52.

    Google Scholar 

  54. M. Egas, M.W. Sabelis, F. Vala, and I. Lesna, Adaptive speciation in agricultural pests. In U. Dieckmann, M. Doebeli, J.A.J. Metz, and D. Tautz (eds.), Adaptive Speciation, 249–263, Cambridge University Press, UK, 2004.

    Google Scholar 

  55. J. Maynard Smith, Sympatric speciation. Am. Nat. 100 (1966), 637.

    Google Scholar 

  56. R.F. Hoekstra, R. Bijlsma, and A.J. Dolman, Polymorphism from environmental heterogeneity – models are only robust if the heterozygote is close in fitness to the favored homozygote in each environment. Genet. Res. 45 (1985), 299–314.

    Article  Google Scholar 

  57. ´ E. Kisdi and S.A.H. Geritz, Evolutionary branching and speciation: Insights from few-locus models. In U. Dieckmann and J.A.J. Metz (eds.), Elements of Adaptive Dynamics, Cambridge University Press, UK, In press.

    Google Scholar 

  58. N. Eldredge and S.J. Gould, Punctuated equilibria: an alternative to phyletic gradualism. In T. Schopf (ed.), Models in Paleobiology, 82–115, Freeman, Cooper and Company,, EUA, 1972.

    Google Scholar 

  59. S.J. Gould and N. Eldredge, Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3 (1977), 115.151.

    Google Scholar 

  60. J.H. Gillespie, The Causes of Molecular Evolution. Oxford University Press, UK, 1991.

    Google Scholar 

  61. A.G. Wouters, Explanation without a cause (verklaren zonder oorzaken te geven). Questiones Infinitae, Publications of the Zeno Institute of Philosophy, XXIX, Utrecht (1999).

    Google Scholar 

  62. F. Galis and J.A.J. Metz, Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. J. Exp. Zool. 291 (2001), 195–204.

    Article  Google Scholar 

  63. F. Galis, J.J.M. van Alphen, and J.A.J. Metz, Why do we have five fingers? The evolutionary constraint on digit numbers. Trends Ecol. Evol. 16 (2001), 637–646.

    Google Scholar 

  64. F. Galis, T.J.M. van Dooren, and J.A.J. Metz, Conservation of the segmented germband stage: modularity and robustness or pleiotropy and stabilizing selection? TIG 18 (2002), 504–509.

    Article  Google Scholar 

  65. F. Galis, T.J.M. Van Dooren, J.D. Feuth, J.A.J. Metz, A. Witkam, S. Ruinard, M.J. Steigenga, and L.C.D. Wijnaendts, Extreme selection in humans against homeotic transformations of cervical vertebrae. Evolution 60 (2006), 2643–2654.

    Google Scholar 

  66. F. Rodr´ıguez-Trelles, R. Tarrio, and F.J. Ayala, Molecular clocks: whence and whither? In P.C.J. Donoghue and M.P. Smith (eds.), Telling the Evolutionary Time: Molecular Clocks and the Fossil Record, 5–26, CRC Press, Boca Raton, USA, 2004.

    Google Scholar 

  67. S.H. Rice, A geometric model for the evolution of development. J. Theor. Biol. 143 (1990), 319–342.

    Article  MathSciNet  Google Scholar 

  68. D. Waxman and J.J. Welch, Fisher’s microscope and Haldane’s ellipse. Am. Nat. 166 (2005), 447–457.

    Article  Google Scholar 

  69. D. Waxman, Fisher’s geometrical model of evolutionary adaptation – beyond spherical geometry. J. Theor. Biol. 241 (2006), 887–895.

    MathSciNet  Google Scholar 

  70. D. Waxman, Mean curvature versus normality: A comparison of two approximations of fisher’s geometrical model. Theor. Popul. Biol. 71 (2007), 30–36.

    Article  MATH  Google Scholar 

  71. F. Galis, I. Van Der Sluijs, T.J. Van Dooren, J.A. Metz, and M. Nussbaumer, Do large dogs die young? J. Exp. Zool. Part B 308B (2007), 119–126.

    Article  Google Scholar 

  72. M. Kopp and J. Hermisson, The evolution of genetic architecture under frequencydependent disruptive selection. Evolution 60 (2006), 1537–1550.

    Google Scholar 

  73. G.S. Van Doorn and U. Dieckmann, The long-term evolution of multilocus traits under frequency-dependent disruptive selection. Evolution 60 (2006), 2226–2238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. J. Hans Metz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Metz, J.A.J.H. (2011). Thoughts on the Geometry of Meso-evolution: Collecting Mathematical Elements for a Postmodern Synthesis. In: Chalub, F., Rodrigues, J. (eds) The Mathematics of Darwin’s Legacy. Mathematics and Biosciences in Interaction. Springer, Basel. https://doi.org/10.1007/978-3-0348-0122-5_11

Download citation

Publish with us

Policies and ethics