Skip to main content

Optimal Stopping Problem Associated with Jump-diffusion Processes

  • Conference paper
  • First Online:
Stochastic Analysis with Financial Applications

Part of the book series: Progress in Probability ((PRPR,volume 65))

Abstract

In this paper we study an optimal stopping problem associated with jump-diffusion processes. We use a viscosity solution approach for the solution to HJB equality, which the value function should obey. Using the penalty method we obtain the existence of the value function as a viscosity solution to the HJB equation, and the uniqueness.

Mathematics Subject Classification (2000). 60J25, 60J75.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arisawa, A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23 (2006) 695–711; Corrigendum: Corrigendum for comparison theorems in: “A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations”, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 24 (2007), 167–169.

    Google Scholar 

  2. M. Arisawa, A remark on the definitions of viscosity solutions for the integrodifferential equations with Lévy operators, J. Math. Pures Appl. (9) 89 (2008), 567–574.

    Google Scholar 

  3. L.H.R. Alvarez, Solving optimal stopping problems of linear diffusions by applying convolution approximations, Math. Methods Oper. Res. 53 (2001), 89–99.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep. 60 (1997), 57–83.

    MathSciNet  MATH  Google Scholar 

  5. G. Barles and C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited, Ann. Inst. Henri Poincaré Analyse non linéare 25 (2008), 567–585.

    Google Scholar 

  6. N. Bellamy, Wealth optimization in an incomplete market driven by a jump-diffusion process, J. Math. Econom. 35 (2001) 259–287.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Benth, K. Karlsen and K. Reikvam, Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: a viscosity solution approach, Finance Stoch. 5 (2001) 275–303.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Benth, K. Karlsen and K. Reikvam, Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution, Finance Stoch. 5 (2001) 447–467.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Benth, K. Karlsen and K. Reikvam, Portfolio optimization in a Lévy market with international substitution and transaction costs, Stoch. Stoch. Reports 74 (2002) 517–569.

    MathSciNet  MATH  Google Scholar 

  10. A. Bensoussan and J.L. Lions, Applications of variational inequalities in stochastic control, North-Holland Pub. Co., New York, N.Y., 1982.

    MATH  Google Scholar 

  11. C. Cancelier, Problemes aux limites pseudo-diffrentiels donnant lieu au principe du maximum, Comm. Partial Differential Equations 11 (1986) 1677–1726.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Chesney and M. Jeanblanc, Pricing American currency options in an exponential Lévy model, Appl. Math. Finance 11 (2004) 207–225.

    Article  MATH  Google Scholar 

  13. M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. A.M.S. 277 (1983) 1–42.

    Google Scholar 

  14. M. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67.

    Google Scholar 

  15. N. Framstad, B. Oksendal and A. Sulem, Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs, J. Math. Econom. 35 (2001) 233–257.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Framstad, B. Oksendal and A. Sulem, Sufficient stochastic maximum principle for the optimal control of jump diffusion and applications to finance, JOTA 121 (2004) 77–98.

    Article  MathSciNet  Google Scholar 

  17. W. Fleming and M. Soner, Controlled Markov processes and viscosity solutions (Second edition), Stochastic Modelling and Applied Probability 25, Springer, New York, 2006.

    Google Scholar 

  18. N.G. Garroni and J-L. Menaldi, Green functions for second order parabolic integrodifferential problems, Longman Scientific & Technical, Essex, 1992.

    Google Scholar 

  19. Y. Ishikawa, Optimal control problem associated with jump processes, Appl. Math. Optim. 50 (2004) 21–65.

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Ishikawa, A small example of non-local operators having no transmission property. Tsukuba J. Math. 25 (2001) 399–411.

    MathSciNet  MATH  Google Scholar 

  21. N. Jacob, Pseudo-differential operators and Markov processes, Akademie Verlag, Berlin, 1996.

    MATH  Google Scholar 

  22. M. Jeanblanc, Financial markets in continuous time, Springer Finance. Berlin: Springer, 2003.

    Google Scholar 

  23. H. Kumano-go, Pseudodifferential operators. Translated from the Japanese by the author, R. Vaillancourt and M. Nagase, MIT Press, Cambridge, Mass.-London, 1981.

    Google Scholar 

  24. N.V. Krylov, Controlled diffusion processes, Applications of Mathematics, 14, Springer-Verlag, New York-Berlin, 1980.

    Google Scholar 

  25. E. Mordecki, Optimal stopping and perpetual options for Levy processes, Finance Stochast. 6 (2002) 473–493.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Mordecki and P. Salminen, Optimal stopping of Hunt and Lévy processes, Stochastics 79 (2007) 233–251.

    MathSciNet  MATH  Google Scholar 

  27. H. Morimoto, Stochastic control and mathematical modeling: application to economics, Cambridge Univ. Press, Cambridge, 2010.

    MATH  Google Scholar 

  28. B. Oksendal and A. Sulem, Applied stochastic control of jump processes (Second edition), Universitext, Springer-Verlag, Berlin, 2007.

    Book  Google Scholar 

  29. H. Pham, Optimal stopping of controlled jump diffusion processes: a viscosity solution approach, J. Math. System Estim. Control 8 (1998) 1–27.

    MathSciNet  Google Scholar 

  30. Ph. Protter, Stochastic integration and differential equations. A new approach. Applications of Mathematics, 21. Springer-Verlag, Berlin, 1990.

    Google Scholar 

  31. W. Rudin, Real and complex analysis, third edition, McGraw-Hill, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this paper

Cite this paper

Ishikawa, Y. (2011). Optimal Stopping Problem Associated with Jump-diffusion Processes. In: Kohatsu-Higa, A., Privault, N., Sheu, SJ. (eds) Stochastic Analysis with Financial Applications. Progress in Probability, vol 65. Springer, Basel. https://doi.org/10.1007/978-3-0348-0097-6_8

Download citation

Publish with us

Policies and ethics