Skip to main content

A Remark on Maximal Regularity of the Stokes Equations

  • Chapter
  • First Online:
Parabolic Problems

Abstract

Assuming that the Helmholtz decomposition exists in \({L}^{q}(\Omega)^{n}\) it is proved that the Stokes equation has maximal \({L}^{q}\,{\rm{-regularity\, in\,}}\,{{L}^{s}}_{\sigma}(\Omega)\,{\rm{for}\,s\,\epsilon}\,[min{q,q^\prime}].\,{\rm{Here\,\Omega\,\subset\,\mathbb{R}^n\,is\,an}\,(\varepsilon,\,\propto)}\) domain with uniform C3-boundary.

Mathematics Subject Classification (2000). 35Q30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abels, Reduced and generalized Stokes resolvent equations in asymptotically flat layers. II. H -calculus, J. Math. Fluid Mech. 7 (2005), no. 2, 223–260. MR MR2177128 (2006m:35271b)

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Amann, Linear and Quasilinear Parabolic Problems . Vol. I, Birkhäuser, Basel, 1995.

    MATH  Google Scholar 

  3. H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997), 5–56.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), no. 1, 16–98. MR MR1755865 (2002b:76028)

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer, J. Math. Soc. Japan 55 (2003), no. 2, 469–497.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer. II. λ = 0 case, J. Math. Fluid Mech. 5 (2003), no. 3, 245–274.

    MATH  MathSciNet  Google Scholar 

  7. H. Abels. Bounded Imaginary Powers and H -Calculus of the Stokes operator in unbounded domains. Progress in Nonlinear Differential Equations and Their Applications, Vol. 64, 1–15.

    Google Scholar 

  8. H. Abels and M. Wiegner, Resolvent estimates for the Stokes operator on an infinite layer, Differential Integral Equations 18 (2005), no. 10, 1081–1110. MR MR2162625 (2006e:35253)

    MATH  MathSciNet  Google Scholar 

  9. O.V. Besov, Continuation of functions from L p l and Wp l, Trudy Mat. Inst. Steklov. 89 (1967), 5–17. MR MR0215077 (35 #5920)

    MATH  MathSciNet  Google Scholar 

  10. M.E. Bogovskiĭ, Decomposition of L p (Ω;R n ) into a direct sum of subspaces of solenoidal and potential vector fields, Dokl. Akad. Nauk SSSR 286 (1986), no. 4, 781–786. MR MR828621 (88c:46035)

    MathSciNet  Google Scholar 

  11. W. Desch, M. Hieber, and J. Prüss, L p -theory of the Stokes equation in a half space, J. Evol. Equ. 1 (2001), no. 1, 115–142. MR MR1838323 (2002c:35212)

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Denk, M. Hieber, and J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003).

    Google Scholar 

  13. R. Farwig, H. Kozono, and H. Sohr, On the Helmholtz decomposition in general unbounded domains, Arch. Math. (Basel) 88 (2007), no. 3, 239–248. MR MR2305602 (2008e:35147)

    MATH  MathSciNet  Google Scholar 

  14. R. Farwig and M.-H. Ri, Resolvent estimates and maximal regularity in weighted L q -spaces of the Stokes operator in an infinite cylinder, J. Math. Fluid Mech. 10 (2008), no. 3, 352–387. MR MR2430805 (2009m:35380)

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Franzke, Strong solution of the Navier-Stokes equations in aperture domains, Ann. Univ. Ferrara Sez. VII (N.S.) 46 (2000), 161–173, Navier-Stokes equations and related nonlinear problems (Ferrara, 1999). MR MR1896928 (2003c:76030)

    MATH  MathSciNet  Google Scholar 

  16. A. Fröhlich, The Stokes operator in weighted L q -spaces. II. Weighted resolvent estimates and maximal L p -regularity, Math. Ann. 339 (2007), no. 2, 287–316. MR MR2324721 (2008i:35188)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), no. 4, 607–643.

    Article  MATH  MathSciNet  Google Scholar 

  18. [Gal94] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations . Vol. I, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994.

    Google Scholar 

  19. M. Geisert, H. Heck, M. Hieber, and O. Sawada, Weak Neumann implies stokes, to appear in J. Reine Angew. Math.

    Google Scholar 

  20. Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L r spaces, Math. Z. 178 (1981), no. 3, 297–329. MR MR635201 (83e:47028)

    Article  MATH  MathSciNet  Google Scholar 

  21. Y. Giga, Domains of fractional powers of the Stokes operator in L r spaces, Arch. Rational Mech. Anal. 89 (1985), no. 3, 251–265. MR MR786549 (86m:47074)

    Article  MATH  MathSciNet  Google Scholar 

  22. Y. Giga and H. Sohr, Abstract L p estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), no. 1, 72–94. MR MR1138838 (92m:35114)

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Grubb and V.A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods, Math. Scand. 69 (1991), no. 2, 217–290 (1992). MR MR1156428 (93e:35082)

    MATH  MathSciNet  Google Scholar 

  24. T. Hishida, The nonstationary Stokes and Navier-Stokes flows through an aperture, Contributions to current challenges in mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser, Basel, 2004, pp. 79–123. MR MR2085848 (2005f:35242)

    Google Scholar 

  25. P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1–2, 71–88. MR MR631089 (83i:30014)

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Kato, Strong L P -solutions of the Navier-Stokes equation in R m , with applications to weak solutions, Math. Z. 187 (1984), no. 4, 471–480. MR MR760047 (86b:35171)

    Article  MATH  MathSciNet  Google Scholar 

  27. P.Ch Kunstmann and Lutz Weis, Perturbation theorems for maximal L p regularity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 2, 415–435. MR 1 895 717

    MATH  MathSciNet  Google Scholar 

  28. S.L. Sobolev, The density of compactly supported functions in the space L p ( m )(E n ), Sibirsk. Mat. Ž. 4 (1963), 673–682. MR MR0174966 (30 #5156)

    MATH  MathSciNet  Google Scholar 

  29. H. Sohr, The Navier-Stokes equations, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001.

    MATH  Google Scholar 

  30. V.A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 213–317.

    Google Scholar 

  31. C.G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in L q -spaces for bounded and exterior domains, Mathematical problems relating to the Navier-Stokes equation, Ser. Adv. Math. Appl. Sci., vol. 11, World Sci. Publ., River Edge, NJ, 1992, pp. 1–35. MR MR1190728 (94b:35084)

    MathSciNet  Google Scholar 

  32. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. MR MR503903 (80i:46032b)

    Google Scholar 

  33. S. Ukai, A solution formula for the Stokes equation in R n +, Comm. Pure Appl. Math. 40 (1987), no. 5, 611–621. MR MR896770 (88k:35166)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Geissert .

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Herbert Amann on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Geissert, M., Heck, H. (2011). A Remark on Maximal Regularity of the Stokes Equations. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_14

Download citation

Publish with us

Policies and ethics