Calculus of Pseudo-Differential Operators and a Local Index of Dirac Operators

  • Chisato IwasakiEmail author
Part of the Operator Theory: Advances and Applications book series (OT, volume 213)


We give the formula for a local index of Dirac operators on Riemannian manifolds of even dimension.


Symbolic calculus fundamental solution Dirac operator local index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Berline, E. Getzler and M. Vergne, Heat Kernels and Dirac Operators. Springer- Verlag, 1992.Google Scholar
  2. 2.
    B. Boos-Bavnbek and K.P. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkh¨auser, 1993.Google Scholar
  3. 3.
    H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schr¨odinger operators, Texts and Monographs in Physics, Springer, 1987.Google Scholar
  4. 4.
    P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Publish or Perish, Inc., 1984.Google Scholar
  5. 5.
    C. Iwasaki and N. Iwasaki, Parametrix for a degenerate parabolic equation and its application to the asymptotic behavior of spectral functions for stationary problems, Publ. Res. Inst. Math. Sci. Kyoto 17 (1981), 557–655.MathSciNetCrossRefGoogle Scholar
  6. 6.
    C. Iwasaki, A proof of the Gauss–Bonnet–Chern theorem by the symbol calculus of pseudo-differential operators, Japanese J. Math. 21 (1995), 235–285.MathSciNetzbMATHGoogle Scholar
  7. 7.
    C. Iwasaki, Symbolic calculus for construction of the fundamental solution for a degenerate equation and a local version of Riemann–Roch theorem, in Geometry, Analysis and Applications, World Scientific, 2000, 83–92,Google Scholar
  8. 8.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I and II, Wiley, 1963.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.University of HyogoHimeji HyogoJapan

Personalised recommendations