Advertisement

Generalized Gevrey Ultradistributions and their Microlocal Analysis

  • Khaled BenmeriemEmail author
  • Chikh Bouzar
Chapter
Part of the Operator Theory: Advances and Applications book series (OT, volume 213)

Abstract

This paper is aimed at giving a general construction of algebras of generalized Gevrey ultradistributions and the microlocal analysis suitable for them. It also makes explicit the contribution of the mollification in the embedding of ultradistributions into algebras of generalized functions.

Keywords

Generalized functions Gevrey ultradistributions Colombeau algebra mollification Gevrey wave front microlocal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Benmeriem and C. Bouzar, Generalized Gevrey ultradistributions, New York J. Math. 15 (2009), 37–72.MathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Benmeriem and C. Bouzar, Ultraregular generalized functions of Colombeau type, J. Math. Sci. Univ. Tokyo 15 (4) (2008), 427–447.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J.F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland, 1984.Google Scholar
  4. 4.
    M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric Theory of Generalized Functions, Kluwer Academic Publishers, 2001.Google Scholar
  5. 5.
    I.M. Gel’fand and G.E. Shilov, Generalized Functions, Volume 2, Academic Press, 1967.Google Scholar
  6. 6.
    G. H¨ormann, M. Oberguggenberger and S. Pilipovi´c. Microlocal hypoellipticity of linear differential operators with generalized functions as coefficients, Trans. Amer. Math. Soc. 358 (8), (2005), 3363–3383.Google Scholar
  7. 7.
    L. H¨ormander. The Analysis of Linear Partial Differential Operators, I, Springer, 1983.Google Scholar
  8. 8.
    J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Volume 3, Springer, 1973.Google Scholar
  9. 9.
    M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes Math. 259, 1992.Google Scholar
  10. 10.
    L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, 1993.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.University of MascaraMascaraAlgeria
  2. 2.Oran-Essenia UniversityOranAlgeria

Personalised recommendations