Advertisement

Hydrodynamics, Probability and the Geometry of the Diffeomorphisms Group

  • Ana Bela CruzeiroEmail author
Conference paper
Part of the Progress in Probability book series (PRPR, volume 63)

Abstract

We characterize the solution of Navier-Stokes equation as a stochastic geodesic on the diffeomorphisms group, thus generalizing Arnold’s description of the Euler flow.

Keywords

Navier-Stokes equation diffeomorphisms group stochastic geodesic equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Airault, P. Malliavin, Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry. J. Funct. Anal. 241 (2006), 99–142.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Albeverio, A.B. Cruzeiro, Global flows with invariant (Gibbs) measures for Euler and Navier-Stokes two-dimensional fluids. Comm. Math. Phys. 129 (1990), 431–444.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    V.I. Arnold, Sur la g´eom´etrie diff´erentielle des groupes de Lie de dimension infinie et ses applications `a l’ hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16 (1966), 316–361.Google Scholar
  4. 4.
    G.K. Batchelor, The theory of homogeneous turbulence. Cambridge Monographs on Mechanics & Applied Math. Series, 1953.Google Scholar
  5. 5.
    F. Cipriano, A.B. Cruzeiro, Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus. Comm. Math. Phys. 275 (2007), 255–269.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A.B. Cruzeiro, F. Flandoli, P. Malliavin, Brownian motion of volume preserving diffeomorphisms and existence of global solutions of 2D stochastic Euler equation. J. Funct. Anal. 242 (2007), 304–326.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A.B. Cruzeiro, P. Malliavin, Nonergodicity of Euler fluid dynamics on tori versus positivity of the Arnold-Ricci tensor. J. Funct. Anal. 254 (2008), 1903–1925.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    A.B. Cruzeiro, E. Shamarova, Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus. Stoch. Proc. and their Applic. 119 (2009), 4034–4060.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Ebin, J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92(1) (1970), 102–163.MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.V. Fursikov, A.I. Komech, M.I. Vishik, Some mathematical problems of statistical hydrodynamics. Dokl. Akad. Nauk. SSSR 246(5) (1979), 1037–1041.MathSciNetGoogle Scholar
  11. 11.
    R. Galanti, A. Tsinober, Is turbulence ergodic? Phys. Letters A 330 (2004), 173–180. [12] H. Kunita, Stochastic flows and stochastic differential equation. Cambridge University Press, 1990.Google Scholar
  12. 12.
    P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle. C.R. Acad. Sci. Paris 329 Ser. I (1999), 325–329.Google Scholar
  13. 13.
    T. Nakagomi, K. Yasue, J.C. Zambrini, Stochastic variational derivations of the Navier-Stokes equation. Lett. Math. Phys. 160 (1999), 337–365.Google Scholar
  14. 14.
    R. Robert, L’effet papillon n’existe plus! SMF-Gazette-90, 2001.Google Scholar
  15. 15.
    S. Skholler, Geometry and curvature of diffeomorphism group with H1 metric and mean hydrodynamics. J. Funct. Anal. 160(1) (1998), 337–365.MathSciNetCrossRefGoogle Scholar
  16. 16.
    K. Yasue, A variational principle for the Navier-Stokes equation. J. Funct. Anal. 51(2) (1983), 133–141.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Dep. Matemática I.S.T. (TUL)LisboaPortugal
  2. 2.Grupo de Física-Matemática da Universidade de LisboaLisboaPortugal

Personalised recommendations