Advertisement

Analyzing the Fine Structure of Continuous Time Stochastic Processes

  • Jeannette H. C. WoernerEmail author
Conference paper
Part of the Progress in Probability book series (PRPR, volume 63)

Abstract

In the recent years especially in finance many different models either based on semimartingales, purely continuous, pure jump and a mixture of both, or fractional Brownian motion have been proposed in the literature. We provide a class of easily computable estimators which allows to infer the fine structure of the underlying process in terms of the Blumenthal-Getoor index or the Hurst exponent based on high frequency data. This method makes it possible not only to detect jumps, but also determine their activity and the regularity of continuous components, which can be used for model selection or to analyze the market microstructure by taking into account different time scales. Furthermore, our method provides a simple graphical tool for detecting jumps.

Keywords

Statistical inference Blumenthal-Getoor index Hurst exponent Lévy process fractional Brownian motion stochastic volatility model power variation high frequency data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Ait-Sahalia, Telling from discrete data whether the underlying continuous-time model is a diffusion, Journal of Finance, 57 (2002), 2075–2112.CrossRefGoogle Scholar
  2. 2.
    Y. Ait-Sahalia and J. Jacod, Estimating the degree of activity of jumps in high frequency data, Annals of Statistics, to appear, 2008.Google Scholar
  3. 3.
    D.J. Aldous and G.K. Eagleson, On mixing and stability of limit theorems, Ann. Probab., 6 (1978), 325–331.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, and J.H.C. Woerner, Bipower variation for Gaussian processes with stationary increments, J. Appl. Probab., 46 (1) (2009), 132–150.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    O.E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics (with discussion), Journal of the Royal Statistical Society, Series B, 63 (2001), 167–241.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    O.E. Barndorff-Nielsen and N. Shephard, Realised power variation and stochastic volatility models, Bernoulli, 9 (2003), 243–265.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    O.E. Barndorff-Nielsen and N. Shephard, Econometrics of testing for jumps in financial econometrics using bipower variation, Journal of Financial Econometrics, 4 (2006), 1–30.MathSciNetCrossRefGoogle Scholar
  8. 8.
    O.E. Barndorff-Nielsen, E. Graversen, J. Jacod, M. Podolskij, and N. Shephard, A central limit theorem for realised power and bipower variation of continuous semimartingales, From Stochastic Analysis to Mathematical Finance, Festschrift for Albert Shiryaev, 2005.Google Scholar
  9. 9.
    S.M. Berman, Sign-invariant random variables and stochastic processes with sign invariant increments, Trans. Amer. Math. Soc., 119 (1965), 216–243.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    D.C. Brody, J. Syroka, and M. Zervos, Dynamical pricing of weather derivatives, Quantitative Finance, 2 (2002), 189–198.MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Carr, H. Geman, D.B. Madan, and M. Yor, Stochastic volatility for L´evy processes, Math. Finance, 13 (2003), 345–382.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    P. Cheridito, Arbitrage in fractional Brownian motion models, Finance and Stochastics,7 (2003), 533–553.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    R. Cont and C. Mancini, Nonparametric tests of analyzing the fine structure of price fluctuations, preprint, 2007.Google Scholar
  14. 14.
    J.M. Corcuera, Power variation analysis of some integral long-memory processes. Proceedings of the Abel Symposium 2005, 2006.Google Scholar
  15. 15.
    J.M. Corcuera, D. Nualart, and J.H.C. Woerner, Power Variation of some integral fractional processes, Bernoulli, 12 (2006), 713–735.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    T. Di Matteo, T. Aste, and M.M. Dacorogna, Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development, Journal of Banking & Finance, 29 (2005), 827–851.CrossRefGoogle Scholar
  17. 17.
    P.D. Ditlevsen, Observation of α-stable noise induced millenal climate changes from a ice record, Geophysical Research Letters, 26 (1999), 1441–1444.CrossRefGoogle Scholar
  18. 18.
    E. Eberlein, J. Kallsen, and J. Kristen, Riskmanagement Based on Stochastic Volatility, Journal of Risk, 2 (2003), 19–44.Google Scholar
  19. 19.
    P. Guasoni, M. Rasonyi, and W. Schachermayer, Consistent price systems and facelifting pricing under transaction costs, Annals of Applied Probability, 18 (2008), 491–520.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Y. Hu and D. Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab., 33 (2005), 948–983.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    W.N. Hudson and J.D. Mason, Variational sums for additive processes, Proc. Amer. Math. Soc, 55 (1976), 395–399.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Hull and A. White, The pricing of options on assets with stochastic volatilities, Journal of Finance, 42 (1987), 281–300.CrossRefGoogle Scholar
  23. 23.
    R.J. Hyndman, (n.d.) Time Series Data Library, FVD1.DAT (Accessed November 2008), http://www.robhyndman.info/TSDL.
  24. 24.
    P. Imkeller and I. Pavlyukevich, First exit times of SDEs driven by stable L´evy processes, Stochastic Processes and their Applications, 116 (2006), 611–642.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    D. Lepingle, La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36 (1976), 295–316.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    C. Mancini, Estimating the integrated volatility in stochastic volatility models with L´evy type jumps, University of Firenze, preprint, 2005.Google Scholar
  27. 27.
    D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals, Ann. Probab., 33 (2005), 177–193.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    G. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, Lecture Notes in Math. S´eminaire de Probabilit´es XXXVIII, (2005), 247–262.Google Scholar
  29. 29.
    R.F. Peltier and J. Levy Vehel, A new method for estimating the parameter of a fractional Brownian motion, Technical Report No 2396, INRIA Rocquencourt, 1994.Google Scholar
  30. 30.
    K. Sato, L´evy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.Google Scholar
  31. 31.
    L. Scott, Option pricing when the variance changes randomly: theory, estimation and an application, Journal of Financial and Quantitative Analysis, 22 (1987), 419–438.CrossRefGoogle Scholar
  32. 32.
    A.N. Shiryaev, Essentials of Stochastic Finance: Facts, Models and Theory, World Scientific, Singapore, 1999.Google Scholar
  33. 33.
    E. Stein and C. Stein, Stock price distributions with stochastic volatility: an analytic approach, Review of Financial Studies, 4 (1991), 727–752.CrossRefGoogle Scholar
  34. 34.
    V. Todorov and G. Tauchen, Activity signature plots and the generalized Blumenthal-Getoor index, working paper, 2007.Google Scholar
  35. 35.
    J.H.C.Woerner, Purely discontinuous L´evy Processes and Power Variation: inference for integrated volatility and the scale parameter, 2003-MF-07, Working Paper Series in Mathematical Finance, University of Oxford.Google Scholar
  36. 36.
    J.H.C. Woerner, Estimation of integrated volatility in stochastic volatility models, Appl. Stochastic Models Bus. Ind., 21 (2005), 27–44.MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    J.H.C. Woerner, Power and multipower variation: inference for high frequency data, In: Stochastic Finance, A.N. Shiryaev, M. do Ros´ario Grossihno, P. Oliviera, and M. Esquivel, Springer, (2006), 343–364.Google Scholar
  38. 38.
    J.H.C. Woerner, Analyzing the fine structure of continuous time stochastic processes, working paper, 2006.Google Scholar
  39. 39.
    J.H.C. Woerner, Inference in L´evy type stochastic volatility models, Advances in Applied Probability, 39 (2007), 531–549.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    J.H.C. Woerner, Volatility estimates for high frequency data: market microstucture noise versus fractional Brownian motion models, preprint, 2007.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany

Personalised recommendations