Advertisement

A Probabilistic Deformation of Calculus of Variations with Constraints

  • Christian LéonardEmail author
  • Jean-Claude Zambrini
Conference paper
Part of the Progress in Probability book series (PRPR, volume 63)

Abstract

In the framework of a probabilistic deformation of the classical calculus of variations, we consider the simplest problem of constraints, and solve it in two different ways. First by a pathwise argument in the line of Euclidean Quantum Mechanics. Second from an entropic (measure theoretic) perspective.

Keywords

Probabilistic calculus of variations stochastic least action principle conditional law of large numbers relative entropy Bernstein processes. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.L. Chung and J.C. Zambrini, Introduction to Random Time and Quantum Randomness, World Scientific, 2003.Google Scholar
  2. 2.
    A.B. Cruzeiro, L. Wu, and J.C. Zambrini, Bernstein processes associated with a Markov process, In: R. Rebolledo, editor, Stochastic Analysis and Mathematical Physics, ANESTOC’ 98. Proceedings of the Third International Workshop, Trends in Mathematics, pages 41–71, Boston, 2000. Birkh¨auser.Google Scholar
  3. 3.
    A.B. Cruzeiro and J.C. Zambrini, Malliavin calculus and Euclidean quantum mechanics, I, J. Funct. Anal., 96 (1) (1991), 62–95.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second edition, Applications of Mathematics, 38, Springer Verlag, 1998.Google Scholar
  5. 5.
    W.H. Fleming and H.M. Soner, Controlled Markov Processes and Viscosity Solutions, volume 25 of Applications of Mathematics, Springer, 1993.Google Scholar
  6. 6.
    H. F¨ollmer, Random fields and diffusion processes, In: ´Ecole d’´Et´e de Probabilit´es de Saint-Flour XV–XVII-1985–87, Lecture Notes in Mathematics, 1362 (1988), Springer, Berlin.Google Scholar
  7. 7.
    M. Giaquinta and S. Hildebrandt, Calculus of Variations I, volume 310 of Grund. der math. Wissensch., Springer, 1996.Google Scholar
  8. 8.
    N. Ikeda and S.Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, 1981.Google Scholar
  9. 9.
    C. L´eonard, Minimizers of energy functionals, Acta Math. Hungar., 93 (4) (2001), 281–325.Google Scholar
  10. 10.
    P. Lescot and J.C. Zambrini, Probabilistic deformation of contact geometry, diffusion processes and their quadrature, In: Seminar on Stochastic Analysis, Random Fields and Applications V, Eds. R. Dalang, M. Dozzi, F. Russo, Progress in Probability Series, Birkh¨auser, 2008.Google Scholar
  11. 11.
    N. Privault and J.C. Zambrini, Markovian bridges and reversible diffusions with jumps, Ann. Inst. H. Poincar´e Probab. Statist., 40 (2004), 599–633.Google Scholar
  12. 12.
    E. Schr¨odinger, Sur la th´eorie relativiste de l’´electron et l’interpr´etation de la m´ecanique quantique, Ann. Inst. H. Poincar´e, 2 (1932), 269–310. Available at http://archive.numdam.org/ARCHIVE/AIHP/
  13. 13.
    J.C. Zambrini, Variational processes and stochastic versions of mechanics, J. Math. Phys., 27 (9) (1986), 2307–2330.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J.C. Zambrini, From the geometry of parabolic PDE to the geometry of SDE, In: A.B. Cruzeiro N. Obata, H. Ouerdiane, Eds., Mathematical Analysis of Random Phenomena, World Scientific, 2007.Google Scholar
  15. 15.
    E. Schr¨odinger, Quantisation as a problem of proper value, Ann. der Physik (4), Vol. 79, 1926 in Collected papers on Wave Mechanics. Chelsea Publishing Company NY, 1978.Google Scholar
  16. 16.
    W.H. Fleming, Exit probabilities and optimal stochastic control, Applied Math. Optim., 4 (1978), 329–346.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Modal-XUniversité Paris OuestNanterreFrance
  2. 2.GFMULLisbonPortugal

Personalised recommendations