Are Fractional Brownian Motions Predictable?

  • Adam JakubowskiEmail author
Conference paper
Part of the Progress in Probability book series (PRPR, volume 63)


We provide a device, called the local predictor, which extends the idea of the predictable compensator. It is shown that a fBm with the Hurst index greater than 1/2 coincides with its local predictor while fBm with the Hurst index smaller than 1/2 does not admit any local predictor.


Fractional Brownian motion predictable compensator local predictor finite energy processes weak Dirichlet processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.V. Ahn and A. Inoue, Prediction of fractional Brownian motion with Hurst index less than 1/2, Bull. Austral. Math. Soc., 70 (2004), 321–328.MathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Biagini, Y. Hu, B. Oxendal, and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, 2008.Google Scholar
  3. 3.
    F. Coquet, A. Jakubowski, J. M´emin, and L. S_lomi´nski, Natural decomposition of processes and weak Dirichlet processes, in: S´eminaire de Probabilit´es XXXIX, 81–116, Lect. Notes in Math., 1874, Springer, 2006.Google Scholar
  4. 4.
    M. Errami and F. Russo, Covariation de convolution de martingales, C. R. Acad. Sci. Paris., 326, S´erie I, (1998), 601–606.Google Scholar
  5. 5.
    M. Errami and F. Russo, n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes, Stochastic Process. Appl., 104 (2003), 259–299.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Fukushima, Dirichlet Forms and Markov Processes, Kodansha and North- Holland, 1980.Google Scholar
  7. 7.
    F. Gozzi and F. Russo, Weak Dirichlet processes with a stochastic control perspective, Stochastic Process. Appl., 116 (2006), 1563–1583.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    S.E. Graversen and M. Rao, Quadratic variation and energy, Nagoya Math. J., 100 (1985), 163–180.MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Jacod, Une g´en´eralisation des semimartingales: les processus admettant un processus `a accroissements ind´ependants tangent, in: S´eminaire de Probabilit´es XVIII, 91–118, Lect. Notes in Math., 1059, Springer, 1984.Google Scholar
  10. 10.
    A. Jakubowski, An almost sure approximation for the predictable process in the Doob- Meyer decomposition theorem, in: S´eminaire de Probabilit´es XXXVIII, 158–164, Lect. Notes in Math., 1857, Springer, 2005.Google Scholar
  11. 11.
    A. Jakubowski, Towards a general Doob-Meyer decomposition theorem, Probab. Math. Statist., 26 (2006), 143–153.MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Koml´os, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar., 18 (1967), 217–229.Google Scholar
  13. 13.
    Y. S. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lect. Notes in Math., 1929, Springer, 2008.Google Scholar
  14. 14.
    C.J. Nuzman and H.V. Poor, Linear estimation of self-similar processes via Lamperti’s transformation, J. Appl. Probab., 37 (2000), 429–452.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland

Personalised recommendations