Skip to main content

Basic Theory of Multivariate Maxima

  • Chapter
  • First Online:
Laws of Small Numbers: Extremes and Rare Events

Abstract

In this chapter, we study the limiting distributions of componentwise defined maxima of iid d-variate rv. Such distributions are again max-stable as in the univariate case. Some technical results and first examples of max-stable df are collected in Section 4.1. In Section 4.2 and 4.3, we describe representations of max-stable df such as the de Haan-Resnick and the Pickands representation. Of special interest for the subsequent chapters will be the Pickands dependence function in Section 4.3 and the D-norm, which will be introduced in Section 4.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Balkema, A.A., and Resnick, S.I. (1977). Max-infinite divisibility. J. Appl. Prob. 14, 309-319.

    Article  MATH  MathSciNet  Google Scholar 

  2. Billingsley, P. (1971). Weak Convergence of Measures: Applications in Probability. SIAM Monograph No. 5, Philadelphia.

    MATH  Google Scholar 

  3. Deheuvels, P., and Tiago de Oliveira, J. (1989). On the non-parametric estimation of the bivariate extreme-value distributions. Statist. Probab. Letters 8, 315-323.

    Article  MATH  MathSciNet  Google Scholar 

  4. Drees, H., and Huang, X. (1998). Best attainable rates of convergence for estimators of the stable tail dependence function. J. Mult. Analysis 64, 25-47.

    Article  MATH  MathSciNet  Google Scholar 

  5. Einmahl, J.H.J., Haan, L. de, and Huang, X. (1993). Estimating a multidimensional extreme-value distribution. J. Mult. Analysis 47, 35-47.

    Article  MATH  Google Scholar 

  6. Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics. 2nd edition, Krieger, Malabar.

    MATH  Google Scholar 

  7. Gumbel, E.J. (1960). Bivariate exponential distributions. J. Amer. Statist. Assoc. 55 698-707.

    Article  MATH  MathSciNet  Google Scholar 

  8. Haan, L. de (1984). A spectral representation of max-stable processes. Ann. Probab. 12, 1194-1204.

    Article  MATH  MathSciNet  Google Scholar 

  9. Haan, L. de, and Pickands, J. (1986). Stationary min-stable processes. Probab. Th. Rel. Fields 72, 478-492.

    Article  Google Scholar 

  10. Haan, L. de, and Resnick, S.I. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. Verw. Gebiete 40, 317-337.

    Article  MATH  Google Scholar 

  11. Hofmann, D. (2006). On the Representation of Multivariate Extreme Value Distributions via Norms. Diploma-thesis, University of Würzburg (in German).

    Google Scholar 

  12. Hofmann, D. (2009). Characterization of the D-Norm Corresponding to a Multivariate Extreme Value Distribution. PhD-thesis, University of Würzburg.

    Google Scholar 

  13. Joe, H. (1994). Multivariate extreme-value distributions with applications to environmental data. Canad. J. Statist. 22, 47-64.

    Article  MATH  MathSciNet  Google Scholar 

  14. Mardia, K.V. (1970). Families of Bivariate Distributions. Griffin, London.

    MATH  Google Scholar 

  15. Marshall, A.W., and Olkin, I. (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62, 30-44.

    Article  MATH  MathSciNet  Google Scholar 

  16. Molchanov, I. (2007). Convex geometry of max-stable distributions. http://www.citebase.org/abstract?id=oai:arXiv.org:math/0603423. Extremes 11, (2008) 235-259.

  17. Pickands III, J. (1981). Multivariate extreme value distributions. Proc. 43th Session ISI (Buenos Aires), pp. 859-878.

    Google Scholar 

  18. Reiss, R.-D. (1989). Approximate Distributions of Order Statistics. (With Applications to Nonparametric Statistics). Springer Series in Statistics, Springer, New York.

    Google Scholar 

  19. Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Applied Prob. Vol. 4, Springer, New York.

    Google Scholar 

  20. Smith, R.L. (1990). Max-stable processes and spatial extremes. Preprint, Univ. North Carolina.

    Google Scholar 

  21. Takahashi, R. (1988). Characterizations of a multivariate extreme value distribution. Adv. Appl. Prob. 20, 235-236.

    Article  MATH  Google Scholar 

  22. Tiago de Oliveira, J. (1989 b). Statistical decisions for bivariate extremes. In Extreme Value Theory. (J. Hüsler and R.-D. Reiss eds.), Lect. Notes Statistics 51, pp. 246-259, Springer, New York.

    Google Scholar 

  23. Vatan, P. (1985). Max-infinite divisibility and max-stability in infinite dimensions. In Probability in Banach Spaces V, Lect. Notes Mathematics 1153, 400-425, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Falk .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Falk, M., Hüsler, J., Reiss, RD. (2011). Basic Theory of Multivariate Maxima. In: Laws of Small Numbers: Extremes and Rare Events. Springer, Basel. https://doi.org/10.1007/978-3-0348-0009-9_4

Download citation

Publish with us

Policies and ethics