Molecular Markers of Plasmodium Resistance to Antimalarials

  • Andrea Ecker
  • Adele M. Lehane
  • David A. FidockEmail author
Part of the Milestones in Drug Therapy book series (MDT)


Investigations into the molecular basis of Plasmodium parasite resistance to antimalarial drugs have made strong progress in defining key determinants. Mutations in the digestive vacuole transmembrane proteins P. falciparum chloroquine resistance transporter (PfCRT) and P. falciparum multidrug resistance protein 1 (PfMDR1) are important drivers of parasite resistance to several quinoline-based drugs including chloroquine, amodiaquine, and to a lesser extent quinine. Amplification of pfmdr1 can also mediate resistance to mefloquine and impact lumefantrine efficacy. Parasite resistance to antifolates has been mapped to point mutations in the target enzymes dihydrofolate reductase and dihydropteroate synthase, and mutations in cytochrome b have been found to ablate atovaquone efficacy. Antibiotic resistance has been associated with mutations that preclude drug inhibition of protein translation in the parasite apicoplast. The study of resistance to artemisinin derivatives and several partner drugs used in artemisinin-based combination therapies is an area of active research that has yet to define clearly how in vitro resistance can translate into predictions of treatment failures. Research in this area is important not only for its ability to generate molecular markers of treatment failure but also for the insights it can provide into drug mode of action and the development of chemical and pharmacological strategies to overcome resistance mechanisms.


Translationally Control Tumor Protein Digestive Vacuole Pfmdr1 Copy Number Parasite Susceptibility Mutant Pfcrt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for this work was provided in part by the NIH (R01 AI50234 to D.A.F.) and an Investigator in Pathogenesis of Infectious Diseases Award from the Burroughs Wellcome Fund (to D.A.F.). A. M. L. is supported by an Australian NHMRC Overseas Biomedical Fellowship (585519) and A.E. is supported by a Human Frontier Science Program Long Term Postdoctoral Fellowship.


  1. 1.
    Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P (2009) A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 8:89PubMedCrossRefGoogle Scholar
  2. 2.
    Sibley CH, Barnes KI, Watkins WM, Plowe CV (2008) A network to monitor antimalarial drug resistance: a plan for moving forward. Trends Parasitol 24:43–48PubMedCrossRefGoogle Scholar
  3. 3.
    Hayton K, Su XZ (2008) Drug resistance and genetic mapping in Plasmodium falciparum. Curr Genet 54:223–239PubMedCrossRefGoogle Scholar
  4. 4.
    Ekland EH, Fidock DA (2007) Advances in understanding the genetic basis of antimalarial drug resistance. Curr Opin Microbiol 10:363–370PubMedCrossRefGoogle Scholar
  5. 5.
    Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW et al (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871PubMedCrossRefGoogle Scholar
  6. 6.
    Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE (2004) Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol 52:985–997PubMedCrossRefGoogle Scholar
  7. 7.
    Mu J, Myers RA, Jiang H, Liu S, Ricklefs S, Waisberg M, Chotivanich K, Wilairatana P, Krudsood S, White NJ et al (2010) Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat Genet 42:268–271PubMedCrossRefGoogle Scholar
  8. 8.
    Martin RE, Kirk K (2004) The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21:1938–1949PubMedCrossRefGoogle Scholar
  9. 9.
    Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298:210–213PubMedCrossRefGoogle Scholar
  10. 10.
    Valderramos SG, Valderramos JC, Musset L, Purcell LA, Mercereau-Puijalon O, Legrand E, Fidock DA (2010) Identification of a mutant PfCRT-mediated chloroquine tolerance phenotype in Plasmodium falciparum. PLoS Pathog 6:e1000887PubMedCrossRefGoogle Scholar
  11. 11.
    Lakshmanan V, Bray PG, Verdier-Pinard D, Johnson DJ, Horrocks P, Muhle RA, Alakpa GE, Hughes RH, Ward SA, Krogstad DJ et al (2005) A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J 24:2294–2305PubMedCrossRefGoogle Scholar
  12. 12.
    Valderramos SG, Fidock DA (2006) Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27:594–601PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang H, Paguio M, Roepe PD (2004) The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine. Biochemistry 43:8290–8296PubMedCrossRefGoogle Scholar
  14. 14.
    Naude B, Brzostowski JA, Kimmel AR, Wellems TE (2005) Dictyostelium discoideum expresses a malaria chloroquine resistance mechanism upon transfection with mutant, but not wild-type, Plasmodium falciparum transporter PfCRT. J Biol Chem 280:25596–25603PubMedCrossRefGoogle Scholar
  15. 15.
    Martin RE, Marchetti RV, Cowan AI, Howitt SM, Broer S, Kirk K (2009) Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science 325:1680–1682PubMedCrossRefGoogle Scholar
  16. 16.
    Bray PG, Martin RE, Tilley L, Ward SA, Kirk K, Fidock DA (2005) Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol 56:323–333PubMedCrossRefGoogle Scholar
  17. 17.
    Best Plummer W, Pinto Pereira LM, Carrington CV (2004) Pfcrt and pfmdr1 alleles associated with chloroquine resistance in Plasmodium falciparum from Guyana, South America. Mem Inst Oswaldo Cruz 99:389–392PubMedCrossRefGoogle Scholar
  18. 18.
    Chen N, Kyle DE, Pasay C, Fowler EV, Baker J, Peters JM, Cheng Q (2003) pfcrt allelic types with two novel amino acid mutations in chloroquine-resistant Plasmodium falciparum isolates from the Philippines. Antimicrob Agents Chemother 47:3500–3505PubMedCrossRefGoogle Scholar
  19. 19.
    Durrand V, Berry A, Sem R, Glaziou P, Beaudou J, Fandeur T (2004) Variations in the sequence and expression of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and their relationship to chloroquine resistance in vitro. Mol Biochem Parasitol 136:273–285PubMedCrossRefGoogle Scholar
  20. 20.
    Echeverry DF, Holmgren G, Murillo C, Higuita JC, Bjorkman A, Gil JP, Osorio L (2007) Polymorphisms in the pfcrt and pfmdr1 genes of Plasmodium falciparum and in vitro susceptibility to amodiaquine and desethylamodiaquine. Am J Trop Med Hyg 77:1034–1038PubMedGoogle Scholar
  21. 21.
    Hatabu T, Iwagami M, Kawazu S, Taguchi N, Escueta AD, Villacorte EA, Rivera PT, Kano S (2009) Association of molecular markers in Plasmodium falciparum crt and mdr1 with in vitro chloroquine resistance: a Philippine study. Parasitol Int 58:166–170PubMedCrossRefGoogle Scholar
  22. 22.
    Huaman MC, Yoshinaga K, Suryanatha A, Suarsana N, Kanbara H (2004) Polymorphisms in the chloroquine resistance transporter gene in Plasmodium falciparum isolates from Lombok, Indonesia. Am J Trop Med Hyg 71:40–42PubMedGoogle Scholar
  23. 23.
    Lim P, Chy S, Ariey F, Incardona S, Chim P, Sem R, Denis MB, Hewitt S, Hoyer S, Socheat D et al (2003) pfcrt polymorphism and chloroquine resistance in Plasmodium falciparum strains isolated in Cambodia. Antimicrob Agents Chemother 47:87–94PubMedCrossRefGoogle Scholar
  24. 24.
    Menard D, Yapou F, Manirakiza A, Djalle D, Matsika-Claquin MD, Talarmin A (2006) Polymorphisms in pfcrt, pfmdr1, dhfr genes and in vitro responses to antimalarials in Plasmodium falciparum isolates from Bangui, Central African Republic. Am J Trop Med Hyg 75:381–387PubMedGoogle Scholar
  25. 25.
    Nagesha HS, Casey GJ, Rieckmann KH, Fryauff DJ, Laksana BS, Reeder JC, Maguire JD, Baird JK (2003) New haplotypes of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene among chloroquine-resistant parasite isolates. Am J Trop Med Hyg 68:398–402PubMedGoogle Scholar
  26. 26.
    Restrepo E, Carmona-Fonseca J, Maestre A (2008) Plasmodium falciparum: high frequency of pfcrt point mutations and emergence of new mutant haplotypes in Colombia. Biomedica 28:523–530PubMedGoogle Scholar
  27. 27.
    Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ (2002) Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323PubMedCrossRefGoogle Scholar
  28. 28.
    Yang Z, Zhang Z, Sun X, Wan W, Cui L, Zhang X, Zhong D, Yan G (2007) Molecular analysis of chloroquine resistance in Plasmodium falciparum in Yunnan Province, China. Trop Med Int Health 12:1051–1060PubMedCrossRefGoogle Scholar
  29. 29.
    Waller KL, Lee S, Fidock DA (2004) Molecular and cellular biology of chloroquine resistance in Plasmodium falciparum. In: Waters AP, Janse CJ (eds) Malaria parasites: genomes and molecular biology. Caister Academic, Wymondham, pp 501–540Google Scholar
  30. 30.
    Pillai DR, Labbe AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkathone S, Zhong K, Kain KC (2001) Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J Infect Dis 183:789–795PubMedCrossRefGoogle Scholar
  31. 31.
    Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA et al (2001) A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344:257–263PubMedCrossRefGoogle Scholar
  32. 32.
    Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D (2001) High-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1. J Infect Dis 183:1535–1538PubMedCrossRefGoogle Scholar
  33. 33.
    Wellems TE, Plowe CV (2001) Chloroquine-resistant malaria. J Infect Dis 184:770–776PubMedCrossRefGoogle Scholar
  34. 34.
    Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV (2003) Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187:1870–1875PubMedCrossRefGoogle Scholar
  35. 35.
    Juliano JJ, Kwiek JJ, Cappell K, Mwapasa V, Meshnick SR (2007) Minority-variant pfcrt K76T mutations and chloroquine resistance, Malawi. Emerg Infect Dis 13:872–877PubMedCrossRefGoogle Scholar
  36. 36.
    Holmgren G, Gil JP, Ferreira PM, Veiga MI, Obonyo CO, Bjorkman A (2006) Amodiaquine resistant Plasmodium falciparum malaria in vivo is associated with selection of pfcrt 76T and pfmdr1 86Y. Infect Genet Evol 6:309–314PubMedCrossRefGoogle Scholar
  37. 37.
    Sa JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE (2009) Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA 106:18883–18889PubMedCrossRefGoogle Scholar
  38. 38.
    Sisowath C, Petersen I, Veiga MI, Martensson A, Premji Z, Bjorkman A, Fidock DA, Gil JP (2009) In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J Infect Dis 199:750–757PubMedCrossRefGoogle Scholar
  39. 39.
    Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, Fujioka H, Fidock DA, Roepe PD, Wellems TE (2002) Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol Pharmacol 61:35–42PubMedCrossRefGoogle Scholar
  40. 40.
    Cooper RA, Lane KD, Deng B, Mu J, Patel JJ, Wellems TE, Su X, Ferdig MT (2007) Mutations in transmembrane domains 1, 4 and 9 of the Plasmodium falciparum chloroquine resistance transporter alter susceptibility to chloroquine, quinine and quinidine. Mol Microbiol 63:270–282PubMedCrossRefGoogle Scholar
  41. 41.
    Rohrbach P, Sanchez CP, Hayton K, Friedrich O, Patel J, Sidhu AB, Ferdig MT, Fidock DA, Lanzer M (2006) Genetic linkage of pfmdr1 with food vacuolar solute import in Plasmodium falciparum. EMBO J 25:3000–3011PubMedCrossRefGoogle Scholar
  42. 42.
    Martin SK, Oduola AM, Milhous WK (1987) Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science 235:899–901PubMedCrossRefGoogle Scholar
  43. 43.
    Foote SJ, Thompson JK, Cowman AF, Kemp DJ (1989) Amplification of the multidrug resistance gene in some chloroquine-resistant isolates of P. falciparum. Cell 57:921–930PubMedCrossRefGoogle Scholar
  44. 44.
    Wilson CM, Serrano AE, Wasley A, Bogenschutz MP, Shankar AH, Wirth DF (1989) Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science 244:1184–1186PubMedCrossRefGoogle Scholar
  45. 45.
    Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, Krogstad DJ (1990) Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345:253–255PubMedCrossRefGoogle Scholar
  46. 46.
    Cowman AF, Galatis D, Thompson JK (1994) Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 91:1143–1147PubMedCrossRefGoogle Scholar
  47. 47.
    Peel SA, Bright P, Yount B, Handy J, Baric RS (1994) A strong association between mefloquine and halofantrine resistance and amplification, overexpression, and mutation in the P-glycoprotein gene homolog (pfmdr) of Plasmodium falciparum in vitro. Am J Trop Med Hyg 51:648–658PubMedGoogle Scholar
  48. 48.
    Ritchie GY, Mungthin M, Green JE, Bray PG, Hawley SR, Ward SA (1996) In vitro selection of halofantrine resistance in Plasmodium falciparum is not associated with increased expression of Pgh1. Mol Biochem Parasitol 83:35–46PubMedCrossRefGoogle Scholar
  49. 49.
    Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ et al (2004) Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364:438–447PubMedCrossRefGoogle Scholar
  50. 50.
    Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, White NJ, Nosten F, Krishna S (1999) The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother 43:2943–2949PubMedGoogle Scholar
  51. 51.
    Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DE, Milhous WK, Wirth DF (1993) Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol 57:151–160PubMedCrossRefGoogle Scholar
  52. 52.
    Nelson AL, Purfield A, McDaniel P, Uthaimongkol N, Buathong N, Sriwichai S, Miller RS, Wongsrichanalai C, Meshnick SR (2005) pfmdr1 genotyping and in vivo mefloquine resistance on the Thai-Myanmar border. Am J Trop Med Hyg 72:586–592PubMedGoogle Scholar
  53. 53.
    Alker AP, Lim P, Sem R, Shah NK, Yi P, Bouth DM, Tsuyuoka R, Maguire JD, Fandeur T, Ariey F et al (2007) Pfmdr1 and in vivo resistance to artesunate-mefloquine in falciparum malaria on the Cambodian-Thai border. Am J Trop Med Hyg 76:641–647PubMedGoogle Scholar
  54. 54.
    Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, Nair S, Nash D, Singhasivanon P, Anderson TJ, Krishna S et al (2006) Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis 42:1570–1577PubMedCrossRefGoogle Scholar
  55. 55.
    Chaiyaroj SC, Buranakiti A, Angkasekwinai P, Looressuwan S, Cowman AF (1999) Analysis of mefloquine resistance and amplification of pfmdr1 in multidrug-resistant Plasmodium falciparum isolates from Thailand. Am J Trop Med Hyg 61:780–783PubMedGoogle Scholar
  56. 56.
    Myrick A, Munasinghe A, Patankar S, Wirth DF (2003) Mapping of the Plasmodium falciparum multidrug resistance gene 5′-upstream region, and evidence of induction of transcript levels by antimalarial drugs in chloroquine sensitive parasites. Mol Microbiol 49:671–683PubMedCrossRefGoogle Scholar
  57. 57.
    Barnes DA, Foote SJ, Galatis D, Kemp DJ, Cowman AF (1992) Selection for high-level chloroquine resistance results in deamplification of the pfmdr1 gene and increased sensitivity to mefloquine in Plasmodium falciparum. EMBO J 11:3067–3075PubMedGoogle Scholar
  58. 58.
    Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA (2006) Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194:528–535PubMedCrossRefGoogle Scholar
  59. 59.
    Bacon DJ, McCollum AM, Griffing SM, Salas C, Soberon V, Santolalla M, Haley R, Tsukayama P, Lucas C, Escalante AA et al (2009) Dynamics of malaria drug resistance patterns in the Amazon basin region following changes in Peruvian national treatment policy for uncomplicated malaria. Antimicrob Agents Chemother 53:2042–2051PubMedCrossRefGoogle Scholar
  60. 60.
    Bonizzoni M, Afrane Y, Baliraine FN, Amenya DA, Githeko AK, Yan G (2009) Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya. Infect Genet Evol 9:806–812PubMedCrossRefGoogle Scholar
  61. 61.
    Dlamini SV, Beshir K, Sutherland CJ (2010) Markers of anti-malarial drug resistance in Plasmodium falciparum isolates from Swaziland: identification of pfmdr1-86 F in natural parasite isolates. Malar J 9:68PubMedCrossRefGoogle Scholar
  62. 62.
    Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF (1990) Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345:255–258PubMedCrossRefGoogle Scholar
  63. 63.
    Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJ, Mutabingwa TK, Sutherland CJ, Hallett RL (2007) Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother 51:991–997PubMedCrossRefGoogle Scholar
  64. 64.
    Mehlotra RK, Mattera G, Bockarie MJ, Maguire JD, Baird JK, Sharma YD, Alifrangis M, Dorsey G, Rosenthal PJ, Fryauff DJ et al (2008) Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 52:2212–2222PubMedCrossRefGoogle Scholar
  65. 65.
    Mita T, Kaneko A, Hombhanje F, Hwaihwanje I, Takahashi N, Osawa H, Tsukahara T, Masta A, Lum JK, Kobayakawa T et al (2006) Role of pfmdr1 mutations on chloroquine resistance in Plasmodium falciparum isolates with pfcrt K76T from Papua New Guinea. Acta Trop 98:137–144PubMedCrossRefGoogle Scholar
  66. 66.
    Nsobya SL, Dokomajilar C, Joloba M, Dorsey G, Rosenthal PJ (2007) Resistance-mediating Plasmodium falciparum pfcrt and pfmdr1 alleles after treatment with artesunate-amodiaquine in Uganda. Antimicrob Agents Chemother 51:3023–3025PubMedCrossRefGoogle Scholar
  67. 67.
    Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, Kawamoto F, Miller RS, Meshnick SR (2003) Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob Agents Chemother 47:2418–2423PubMedCrossRefGoogle Scholar
  68. 68.
    Volkman SK, Cowman AF, Wirth DF (1995) Functional complementation of the ste6 gene of Saccharomyces cerevisiae with the pfmdr1 gene of Plasmodium falciparum. Proc Natl Acad Sci USA 92:8921–8925PubMedCrossRefGoogle Scholar
  69. 69.
    van Es HH, Karcz S, Chu F, Cowman AF, Vidal S, Gros P, Schurr E (1994) Expression of the plasmodial pfmdr1 gene in mammalian cells is associated with increased susceptibility to chloroquine. Mol Cell Biol 14:2419–2428PubMedCrossRefGoogle Scholar
  70. 70.
    Sanchez CP, Rotmann A, Stein WD, Lanzer M (2008) Polymorphisms within PfMDR1 alter the substrate specificity for anti-malarial drugs in Plasmodium falciparum. Mol Microbiol 70:786–798PubMedGoogle Scholar
  71. 71.
    Duraisingh MT, Cowman AF (2005) Contribution of the pfmdr1 gene to antimalarial drug-resistance. Acta Trop 94:181–190PubMedCrossRefGoogle Scholar
  72. 72.
    Sidhu AB, Valderramos SG, Fidock DA (2005) pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57:913–926PubMedCrossRefGoogle Scholar
  73. 73.
    Holmgren G, Hamrin J, Svard J, Martensson A, Gil JP, Bjorkman A (2007) Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect Genet Evol 7:562–569PubMedCrossRefGoogle Scholar
  74. 74.
    Anderson TJ, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, Nosten F (2005) Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 49:2180–2188PubMedCrossRefGoogle Scholar
  75. 75.
    Dokomajilar C, Nsobya SL, Greenhouse B, Rosenthal PJ, Dorsey G (2006) Selection of Plasmodium falciparum pfmdr1 alleles following therapy with artemether-lumefantrine in an area of Uganda where malaria is highly endemic. Antimicrob Agents Chemother 50:1893–1895PubMedCrossRefGoogle Scholar
  76. 76.
    Sisowath C, Ferreira PE, Bustamante LY, Dahlstrom S, Martensson A, Bjorkman A, Krishna S, Gil JP (2007) The role of pfmdr1 in Plasmodium falciparum tolerance to artemether-lumefantrine in Africa. Trop Med Int Health 12:736–742PubMedCrossRefGoogle Scholar
  77. 77.
    Pillai DR, Hijar G, Montoya Y, Marouino W, Ruebush TK 2nd, Wongsrichanalai C, Kain KC (2003) Lack of prediction of mefloquine and mefloquine-artesunate treatment outcome by mutations in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) gene for P. falciparum malaria in Peru. Am J Trop Med Hyg 68:107–110PubMedGoogle Scholar
  78. 78.
    Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403:906–909PubMedCrossRefGoogle Scholar
  79. 79.
    Duraisingh MT, Roper C, Walliker D, Warhurst DC (2000) Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol 36:955–961PubMedCrossRefGoogle Scholar
  80. 80.
    Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC et al (2003) Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49:977–989PubMedCrossRefGoogle Scholar
  81. 81.
    Cojean S, Noel A, Garnier D, Hubert V, Le Bras J, Durand R (2006) Lack of association between putative transporter gene polymorphisms in Plasmodium falciparum and chloroquine resistance in imported malaria isolates from Africa. Malar J 5:24PubMedCrossRefGoogle Scholar
  82. 82.
    Dahlstrom S, Ferreira PE, Veiga MI, Sedighi N, Wiklund L, Martensson A, Farnert A, Sisowath C, Osorio L, Darban H et al (2009) Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J Infect Dis 200:1456–1464PubMedCrossRefGoogle Scholar
  83. 83.
    Dahlstrom S, Veiga MI, Martensson A, Bjorkman A, Gil JP (2009) Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment. Antimicrob Agents Chemother 53:2553–2556PubMedCrossRefGoogle Scholar
  84. 84.
    Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M, Fay MP, McCutchan TF, Su XZ (2009) Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 284:7687–7696PubMedCrossRefGoogle Scholar
  85. 85.
    Vinayak S, Alam MT, Upadhyay M, Das MK, Dev V, Singh N, Dash AP, Sharma YD (2007) Extensive genetic diversity in the Plasmodium falciparum Na+/H+ exchanger 1 transporter protein implicated in quinine resistance. Antimicrob Agents Chemother 51:4508–4511PubMedCrossRefGoogle Scholar
  86. 86.
    Andriantsoanirina V, Menard D, Rabearimanana S, Hubert V, Bouchier C, Tichit M, Bras JL, Durand R (2010) Association of microsatellite variations of Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) gene with reduced in vitro susceptibility to quinine: lack of confirmation in clinical isolates from Africa. Am J Trop Med Hyg 82:782–787PubMedCrossRefGoogle Scholar
  87. 87.
    Henry M, Briolant S, Zettor A, Pelleau S, Baragatti M, Baret E, Mosnier J, Amalvict R, Fusai T, Rogier C et al (2009) Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 53:1926–1930PubMedCrossRefGoogle Scholar
  88. 88.
    Bennett TN, Patel J, Ferdig MT, Roepe PD (2007) Plasmodium falciparum Na+/H+ exchanger activity and quinine resistance. Mol Biochem Parasitol 153:48–58PubMedCrossRefGoogle Scholar
  89. 89.
    Spillman NJ, Allen RJ, Kirk K (2008) Acid extrusion from the intraerythrocytic malaria parasite is not via a Na(+)/H(+) exchanger. Mol Biochem Parasitol 162:96–99PubMedCrossRefGoogle Scholar
  90. 90.
    Nkrumah LJ, Riegelhaupt PM, Moura P, Johnson DJ, Patel J, Hayton K, Ferdig MT, Wellems TE, Akabas MH, Fidock DA (2009) Probing the multifactorial basis of Plasmodium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium-proton exchanger PfNHE. Mol Biochem Parasitol 165:122–131PubMedCrossRefGoogle Scholar
  91. 91.
    Vinetz JM, Clain J, Bounkeua V, Eastman RT, Fidock DA (2011) Chemotherapy of malaria. In: Brunton LL, Chabner B, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill Medical, New York, pp 1383–1418Google Scholar
  92. 92.
    Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR (2002) Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209–218PubMedCrossRefGoogle Scholar
  93. 93.
    Sibley CH, Hyde JE, Sims PF, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM (2001) Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 17:582–588PubMedCrossRefGoogle Scholar
  94. 94.
    Gregson A, Plowe CV (2005) Mechanisms of resistance of malaria parasites to antifolates. Pharmacol Rev 57:117–145PubMedCrossRefGoogle Scholar
  95. 95.
    Peterson DS, Walliker D, Wellems TE (1988) Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85:9114–9118PubMedCrossRefGoogle Scholar
  96. 96.
    Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ (1988) Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 85:9109–9113PubMedCrossRefGoogle Scholar
  97. 97.
    Foote SJ, Galatis D, Cowman AF (1990) Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc Natl Acad Sci USA 87:3014–3017PubMedCrossRefGoogle Scholar
  98. 98.
    Peterson DS, Milhous WK, Wellems TE (1990) Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc Natl Acad Sci USA 87:3018–3022PubMedCrossRefGoogle Scholar
  99. 99.
    Triglia T, Cowman AF (1994) Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 91:7149–7153PubMedCrossRefGoogle Scholar
  100. 100.
    Brooks DR, Wang P, Read M, Watkins WM, Sims PF, Hyde JE (1994) Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem 224:397–405PubMedCrossRefGoogle Scholar
  101. 101.
    Wu Y, Kirkman LA, Wellems TE (1996) Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc Natl Acad Sci USA 93:1130–1134PubMedCrossRefGoogle Scholar
  102. 102.
    Triglia T, Wang P, Sims PF, Hyde JE, Cowman AF (1998) Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J 17:3807–3815PubMedCrossRefGoogle Scholar
  103. 103.
    Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV (1997) Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci USA 94:1124–1129PubMedCrossRefGoogle Scholar
  104. 104.
    Triglia T, Menting JG, Wilson C, Cowman AF (1997) Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 94:13944–13949PubMedCrossRefGoogle Scholar
  105. 105.
    Reynolds MG, Roos DS (1998) A biochemical and genetic model for parasite resistance to antifolates. Toxoplasma gondii provides insights into pyrimethamine and cycloguanil resistance in Plasmodium falciparum. J Biol Chem 273:3461–3469PubMedCrossRefGoogle Scholar
  106. 106.
    Kublin JG, Witzig RS, Shankar AH, Zurita JQ, Gilman RH, Guarda JA, Cortese JF, Plowe CV (1998) Molecular assays for surveillance of antifolate-resistant malaria. Lancet 351:1629–1630PubMedCrossRefGoogle Scholar
  107. 107.
    Kiara SM, Okombo J, Masseno V, Mwai L, Ochola I, Borrmann S, Nzila A (2009) In vitro activity of antifolate and polymorphism in dihydrofolate reductase of Plasmodium falciparum isolates from the Kenyan coast: emergence of parasites with Ile-164-Leu mutation. Antimicrob Agents Chemother 53:3793–3798PubMedCrossRefGoogle Scholar
  108. 108.
    Cortese JF, Plowe CV (1998) Antifolate resistance due to new and known Plasmodium falciparum dihydrofolate reductase mutations expressed in yeast. Mol Biochem Parasitol 94:205–214PubMedCrossRefGoogle Scholar
  109. 109.
    Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, Neafsey DE, Weinreich DM, Hartl DL (2009) Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106:12025–12030PubMedCrossRefGoogle Scholar
  110. 110.
    Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, Mukadam RA, Rogerson SJ, Lescano AG, Molyneux ME et al (2002) Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis 185:380–388PubMedCrossRefGoogle Scholar
  111. 111.
    Kyabayinze D, Cattamanchi A, Kamya MR, Rosenthal PJ, Dorsey G (2003) Validation of a simplified method for using molecular markers to predict sulfadoxine-pyrimethamine treatment failure in African children with falciparum malaria. Am J Trop Med Hyg 69:247–252PubMedGoogle Scholar
  112. 112.
    Harrington WE, Mutabingwa TK, Muehlenbachs A, Sorensen B, Bolla MC, Fried M, Duffy PE (2009) Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci USA 106:9027–9032PubMedCrossRefGoogle Scholar
  113. 113.
    Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D, Zhou Y, Johnson JR, Le Roch K, Sarr O, Ndir O et al (2006) A systematic map of genetic variation in Plasmodium falciparum. PLoS Pathog 2:e57PubMedCrossRefGoogle Scholar
  114. 114.
    Nair S, Miller B, Barends M, Jaidee A, Patel J, Mayxay M, Newton P, Nosten F, Ferdig MT, Anderson TJ (2008) Adaptive copy number evolution in malaria parasites. PLoS Genet 4:e1000243PubMedCrossRefGoogle Scholar
  115. 115.
    Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ et al (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467PubMedCrossRefGoogle Scholar
  116. 116.
    Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620PubMedCrossRefGoogle Scholar
  117. 117.
    Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961PubMedCrossRefGoogle Scholar
  118. 118.
    Cardi D, Pozza A, Arnou B, Marchal E, Clausen JD, Andersen JP, Krishna S, Moller JV, le Maire M, Jaxel C (2010) Purified E255L mutant SERCA1a and purified PfATP6 are sensitive to SERCA-type inhibitors but insensitive to artemisinins. J Biol Chem 285:26406–26416PubMedCrossRefGoogle Scholar
  119. 119.
    Krishna S, Pulcini S, Fatih F, Staines H (2010) Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol 26:517–523PubMedCrossRefGoogle Scholar
  120. 120.
    Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK et al (2005) A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12:628–629PubMedCrossRefGoogle Scholar
  121. 121.
    Valderramos SG, Scanfeld D, Uhlemann AC, Fidock DA, Krishna S (2010) Investigations into the role of the Plasmodium falciparum SERCA (PfATP6) L263E mutation in artemisinin action and resistance. Antimicrob Agents Chemother 54:3842–3852PubMedCrossRefGoogle Scholar
  122. 122.
    Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T et al (2005) Resistance of Plasmodium falciparum field isolates to in vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet 366:1960–1963PubMedCrossRefGoogle Scholar
  123. 123.
    Jambou R, Martinelli A, Pinto J, Gribaldo S, Legrand E, Niang M, Kim N, Pharath L, Volnay B, Ekala MT et al (2010) Geographic structuring of the Plasmodium falciparum sarco(endo)plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity. PLoS One 5:e9424PubMedCrossRefGoogle Scholar
  124. 124.
    Ferrer-Rodriguez I, Perez-Rosado J, Gervais GW, Peters W, Robinson BL, Serrano AE (2004) Plasmodium yoelii: identification and partial characterization of an MDR1 gene in an artemisinin-resistant line. J Parasitol 90:152–160PubMedCrossRefGoogle Scholar
  125. 125.
    Chavchich M, Gerena L, Peters J, Chen N, Cheng Q, Kyle DE (2010) Induction of resistance to artemisinin derivatives in Plasmodium falciparum: role of Pfmdr1 amplification and expression. Antimicrob Agents Chemother 54:2455–2464PubMedCrossRefGoogle Scholar
  126. 126.
    Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, Berry A, Benoit-Vical F (2010) Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54:1872–1877PubMedCrossRefGoogle Scholar
  127. 127.
    Chen N, Chavchich M, Peters JM, Kyle DE, Gatton ML, Cheng Q (2010) De-amplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro. Antimicrob Agents Chemother 54:3395–3401PubMedCrossRefGoogle Scholar
  128. 128.
    Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, do Rosario V, Cravo P (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50:480–489PubMedCrossRefGoogle Scholar
  129. 129.
    Hunt P, Afonso A, Creasey A, Culleton R, Sidhu AB, Logan J, Valderramos SG, McNae I, Cheesman S, do Rosario V et al (2007) Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol Microbiol 65:27–40PubMedCrossRefGoogle Scholar
  130. 130.
    Hunt P, Martinelli A, Modrzynska K, Borges S, Creasey A, Rodrigues L, Beraldi D, Loewe L, Fawcett R, Kumar S et al (2010) Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics 11:499PubMedCrossRefGoogle Scholar
  131. 131.
    Walker DJ, Pitsch JL, Peng MM, Robinson BL, Peters W, Bhisutthibhan J, Meshnick SR (2000) Mechanisms of artemisinin resistance in the rodent malaria pathogen Plasmodium yoelii. Antimicrob Agents Chemother 44:344–347PubMedCrossRefGoogle Scholar
  132. 132.
    Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273:16192–16198PubMedCrossRefGoogle Scholar
  133. 133.
    Eastman RT, Fidock DA (2009) Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7:864–874PubMedGoogle Scholar
  134. 134.
    Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3:870–881PubMedCrossRefGoogle Scholar
  135. 135.
    Dahl EL, Rosenthal PJ (2008) Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24:279–284PubMedCrossRefGoogle Scholar
  136. 136.
    Briolant S, Baragatti M, Parola P, Simon F, Tall A, Sokhna C, Hovette P, Mamfoumbi MM, Koeck JL, Delmont J et al (2009) Multinormal in vitro distribution model suitable for the distribution of Plasmodium falciparum chemosusceptibility to doxycycline. Antimicrob Agents Chemother 53:688–695PubMedCrossRefGoogle Scholar
  137. 137.
    Dahl EL, Shock JL, Shenai BR, Gut J, DeRisi JL, Rosenthal PJ (2006) Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 50:3124–3131PubMedCrossRefGoogle Scholar
  138. 138.
    Briolant S, Wurtz N, Zettor A, Rogier C, Pradines B (2010) Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J Infect Dis 201:153–159PubMedCrossRefGoogle Scholar
  139. 139.
    Wiesner J, Reichenberg A, Heinrich S, Schlitzer M, Jomaa H (2008) The plastid-like organelle of apicomplexan parasites as drug target. Curr Pharm Des 14:855–871PubMedCrossRefGoogle Scholar
  140. 140.
    Dharia NV, Plouffe D, Bopp SE, Gonzalez-Paez GE, Lucas C, Salas C, Soberon V, Bursulaya B, Kochel TJ, Bacon DJ et al (2010) Genome scanning of Amazonian Plasmodium falciparum shows subtelomeric instability and clindamycin-resistant parasites. Genome Res 20:1534–1544PubMedCrossRefGoogle Scholar
  141. 141.
    Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–128PubMedCrossRefGoogle Scholar
  142. 142.
    Douthwaite S, Hansen LH, Mauvais P (2000) Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23 S rRNA. Mol Microbiol 36:183–193PubMedCrossRefGoogle Scholar
  143. 143.
    Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–188PubMedCrossRefGoogle Scholar
  144. 144.
    Hansen LH, Mauvais P, Douthwaite S (1999) The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23 S ribosomal RNA. Mol Microbiol 31:623–631PubMedCrossRefGoogle Scholar
  145. 145.
    Sidhu AB, Sun Q, Nkrumah LJ, Dunne MW, Sacchettini JC, Fidock DA (2007) In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem 282:2494–2504PubMedCrossRefGoogle Scholar
  146. 146.
    Franceschi F, Kanyo Z, Sherer EC, Sutcliffe J (2004) Macrolide resistance from the ribosome perspective. Curr Drug Targets Infect Disord 4:177–191PubMedCrossRefGoogle Scholar
  147. 147.
    Borrmann S, Adegnika AA, Matsiegui PB, Issifou S, Schindler A, Mawili-Mboumba DP, Baranek T, Wiesner J, Jomaa H, Kremsner PG (2004) Fosmidomycin-clindamycin for Plasmodium falciparum infections in African children. J Infect Dis 189:901–908PubMedCrossRefGoogle Scholar
  148. 148.
    Borrmann S, Adegnika AA, Moussavou F, Oyakhirome S, Esser G, Matsiegui PB, Ramharter M, Lundgren I, Kombila M, Issifou S et al (2005) Short-course regimens of artesunate-fosmidomycin in treatment of uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 49:3749–3754PubMedCrossRefGoogle Scholar
  149. 149.
    Borrmann S, Issifou S, Esser G, Adegnika AA, Ramharter M, Matsiegui PB, Oyakhirome S, Mawili-Mboumba DP, Missinou MA, Kun JF et al (2004) Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J Infect Dis 190:1534–1540PubMedCrossRefGoogle Scholar
  150. 150.
    Dharia NV, Sidhu AB, Cassera MB, Westenberger SJ, Bopp SE, Eastman RT, Plouffe D, Batalov S, Park DJ, Volkman SK et al (2009) Use of high-density tiling microarrays to identify mutations globally and elucidate mechanisms of drug resistance in Plasmodium falciparum. Genome Biol 10:R21PubMedCrossRefGoogle Scholar
  151. 151.
    Hudson AT, Dickins M, Ginger CD, Gutteridge WE, Holdich T, Hutchinson DB, Pudney M, Randall AW, Latter VS (1991) 566 C80: a potent broad spectrum anti-infective agent with activity against malaria and opportunistic infections in AIDS patients. Drugs Exp Clin Res 17:427–435PubMedGoogle Scholar
  152. 152.
    Chiodini PL, Conlon CP, Hutchinson DB, Farquhar JA, Hall AP, Peto TE, Birley H, Warrell DA (1995) Evaluation of atovaquone in the treatment of patients with uncomplicated Plasmodium falciparum malaria. J Antimicrob Chemother 36:1073–1078PubMedCrossRefGoogle Scholar
  153. 153.
    Looareesuwan S, Chulay JD, Canfield CJ, Hutchinson DB (1999) Malarone (atovaquone and proguanil hydrochloride): a review of its clinical development for treatment of malaria. Am J Trop Med Hyg 60:533–541PubMedGoogle Scholar
  154. 154.
    Looareesuwan S, Viravan C, Webster HK, Kyle DE, Hutchinson DB, Canfield CJ (1996) Clinical studies of atovaquone, alone or in combination with other antimalarial drugs, for treatment of acute uncomplicated malaria in Thailand. Am J Trop Med Hyg 54:62–66PubMedGoogle Scholar
  155. 155.
    Nakato H, Vivancos R, Hunter PR (2007) A systematic review and meta-analysis of the effectiveness and safety of atovaquone proguanil (Malarone) for chemoprophylaxis against malaria. J Antimicrob Chemother 60:929–936PubMedCrossRefGoogle Scholar
  156. 156.
    Srivastava IK, Vaidya AB (1999) A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother 43:1334–1339PubMedGoogle Scholar
  157. 157.
    Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711PubMedCrossRefGoogle Scholar
  158. 158.
    Fry M, Pudney M (1992) Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566 C80). Biochem Pharmacol 43:1545–1553PubMedCrossRefGoogle Scholar
  159. 159.
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91PubMedCrossRefGoogle Scholar
  160. 160.
    Vaidya AB, Mather MW (2000) Atovaquone resistance in malaria parasites. Drug Resist Updat 3:283–287PubMedCrossRefGoogle Scholar
  161. 161.
    Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q (2000) Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44:2100–2108PubMedCrossRefGoogle Scholar
  162. 162.
    Syafruddin D, Siregar JE, Marzuki S (1999) Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone. Mol Biochem Parasitol 104:185–194PubMedCrossRefGoogle Scholar
  163. 163.
    McFadden DC, Tomavo S, Berry EA, Boothroyd JC (2000) Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance. Mol Biochem Parasitol 108:1–12PubMedCrossRefGoogle Scholar
  164. 164.
    Sutherland CJ, Laundy M, Price N, Burke M, Fivelman QL, Pasvol G, Klein JL, Chiodini PL (2008) Mutations in the Plasmodium falciparum cytochrome b gene are associated with delayed parasite recrudescence in malaria patients treated with atovaquone-proguanil. Malar J 7:240PubMedCrossRefGoogle Scholar
  165. 165.
    Perry TL, Pandey P, Grant JM, Kain KC (2009) Severe atovaquone-resistant Plasmodium falciparum malaria in a Canadian traveller returned from the Indian subcontinent. Open Med 3:e10–e16PubMedGoogle Scholar
  166. 166.
    Musset L, Le Bras J, Clain J (2007) Parallel evolution of adaptive mutations in Plasmodium falciparum mitochondrial DNA during atovaquone-proguanil treatment. Mol Biol Evol 24:1582–1585PubMedCrossRefGoogle Scholar
  167. 167.
    Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, Daldal F, Vaidya AB (2005) Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 280:27458–27465PubMedCrossRefGoogle Scholar
  168. 168.
    Orjuela-Sanchez P, de Santana Filho FS, Machado-Lima A, Chehuan YF, Costa MR, Alecrim MG, del Portillo HA (2009) Analysis of single-nucleotide polymorphisms in the crt-o and mdr1 genes of Plasmodium vivax among chloroquine-resistant isolates from the Brazilian Amazon region. Antimicrob Agents Chemother 53:3561–3564PubMedCrossRefGoogle Scholar
  169. 169.
    Imwong M, Pukrittayakamee S, Pongtavornpinyo W, Nakeesathit S, Nair S, Newton P, Nosten F, Anderson TJ, Dondorp A, Day NP et al (2008) Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob Agents Chemother 52:2657–2659PubMedCrossRefGoogle Scholar
  170. 170.
    Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF et al (2001) Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 183:1653–1661PubMedCrossRefGoogle Scholar
  171. 171.
    Sa JM, Nomura T, Neves J, Baird JK, Wellems TE, del Portillo HA (2005) Plasmodium vivax: allele variants of the mdr1 gene do not associate with chloroquine resistance among isolates from Brazil, Papua, and monkey-adapted strains. Exp Parasitol 109:256–259PubMedCrossRefGoogle Scholar
  172. 172.
    Barnadas C, Ratsimbasoa A, Tichit M, Bouchier C, Jahevitra M, Picot S, Menard D (2008) Plasmodium vivax resistance to chloroquine in Madagascar: clinical efficacy and polymorphisms in pvmdr1 and pvcrt-o genes. Antimicrob Agents Chemother 52:4233–4240PubMedCrossRefGoogle Scholar
  173. 173.
    Suwanarusk R, Russell B, Chavchich M, Chalfein F, Kenangalem E, Kosaisavee V, Prasetyorini B, Piera KA, Barends M, Brockman A et al (2007) Chloroquine resistant Plasmodium vivax: in vitro characterisation and association with molecular polymorphisms. PLoS One 2:e1089PubMedCrossRefGoogle Scholar
  174. 174.
    Gama BE, Oliveira NK, Souza JM, Daniel-Ribeiro CT, Ferreira-da-Cruz Mde F (2009) Characterisation of pvmdr1 and pvdhfr genes associated with chemoresistance in Brazilian Plasmodium vivax isolates. Mem Inst Oswaldo Cruz 104:1009–1011PubMedCrossRefGoogle Scholar
  175. 175.
    Sa JM, Yamamoto MM, Fernandez-Becerra C, de Azevedo MF, Papakrivos J, Naude B, Wellems TE, Del Portillo HA (2006) Expression and function of pvcrt-o, a Plasmodium vivax ortholog of pfcrt, in Plasmodium falciparum and Dictyostelium discoideum. Mol Biochem Parasitol 150:219–228PubMedCrossRefGoogle Scholar
  176. 176.
    Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH (2007) Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 23:213–222PubMedCrossRefGoogle Scholar
  177. 177.
    Kongsaeree P, Khongsuk P, Leartsakulpanich U, Chitnumsub P, Tarnchompoo B, Walkinshaw MD, Yuthavong Y (2005) Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Proc Natl Acad Sci USA 102:13046–13051PubMedCrossRefGoogle Scholar
  178. 178.
    Yuvaniyama J, Chitnumsub P, Kamchonwongpaisan S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw MD, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR-TS structures. Nat Struct Biol 10:357–365PubMedCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Andrea Ecker
    • 1
  • Adele M. Lehane
    • 1
    • 2
  • David A. Fidock
    • 1
    • 3
    Email author
  1. 1.Department of Microbiology and ImmunologyColumbia University Medical CenterNew YorkUSA
  2. 2.Research School of BiologyThe Australian National UniversityCanberraAustralia
  3. 3.Division of Infectious Diseases, Department of MedicineColumbia University Medical CenterNew YorkUSA

Personalised recommendations