Skip to main content

Introduction to Symplectic Field Theory

  • Chapter

Part of the Modern Birkhäuser Classics book series (MBC)

Abstract

We sketch in this article a new theory, which we call Symplectic Field Theory or SFT, which provides an approach to Gromov-Witten invariants of symplectic manifolds and their Lagrangian submanifolds in the spirit of topological field theory, and at the same time serves as a rich source of new invariants of contact manifolds and their Legendrian submanifolds. Moreover, we hope that the applications of SFT go far beyond this framework.1

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The research is partially supported by the National Science Foundation

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Abbas, H. Hofer, Holomorphic curves and global questions in contact geometry, to appear in Birkhäuser.

    Google Scholar 

  2. V.I. Arnold, Sur une propriété topologique des applications globalement canoniques de la méchanique classique, C. R. Acad. Paris 261 (1965), 3719–3722.

    Google Scholar 

  3. V.I. Arnold, On a characteristic class entering in quantization conditions, Funct. Anal. and Applic. 1 (1967), 1–14.

    Article  Google Scholar 

  4. V.I. Arnold, First steps in symplectic topology, Russian Math. Surveys 41 (1986), 1–21.

    Article  Google Scholar 

  5. D. Benneqtjin, Entrelacements et équations de Pfaff, Astérisque (1983), 106–107.

    Google Scholar 

  6. P. Biran, K. Cieliebak, Symplectic topology on subcritical manifolds, preprint, 2000.

    Google Scholar 

  7. E. Brieskorn, Beispiele zur differentialtopologie von singularitäten, Invent. Math. 2 (1966), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  8. Yu. Chekanov, Differential algebra of a Legendrian link, preprint, 1997.

    Google Scholar 

  9. C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33–49.

    Article  MATH  MathSciNet  Google Scholar 

  10. S.K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), 257–315.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Diff. Geom. 44 (1996), 666–705.

    MATH  MathSciNet  Google Scholar 

  12. Y. Eliashberg, Topological characterization of Stein manifolds of complex dimension > 2, Int. J. of Math. 1 (1991), 29–46.

    Article  MathSciNet  Google Scholar 

  13. Y. Eliashberg, Invariants in contact topology, Proc. of ICM-98, Berlin, Doc. Math. (1998), 327–338.

    Google Scholar 

  14. Y. Eliashberg, M. Gromov, Convex symplectic manifolds, Proc. of Symp. in Pure Math. 52:2 (1991), 135–162.

    MathSciNet  Google Scholar 

  15. Y. Eliashberg, H. Hofer, A Hamiltonian characterization of the three-ball, Differential Integral Equations 7 (1994), 1303–1324.

    MATH  MathSciNet  Google Scholar 

  16. Y. Eliashberg, H. Hofer, S. Salamon, Lagrangian intersections in contact geometry, Geom. and Funct. Anal. 5 (1995), 244–269.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Etnyre, J. Sabloff, Coherent orientations and invariants of Legendrian knots, preprint, 2000.

    Google Scholar 

  18. A. Floer, The unregularised gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988), 775–813.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Floer, H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), 13–38.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. Fukaya, K. Ono, Arnold conjecture and Gromov-Witten invariants, preprint, 1996.

    Google Scholar 

  21. K. Fukaya, K. Ono, Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds, in “The Arnoldfest” (Toronto, ON, 1997), Fields Inst. Commun., 24, Amer. Math. Soc., Providence, RI (1999), 173–190.

    Google Scholar 

  22. K. Fukaya, K. Ono, Y.-G. Oh, H. Ohta, Lagrangian intersection Floer theory. Anomaly and obstruction, preprint, 2000.

    Google Scholar 

  23. W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology, Proc. of Symp. in Pure Math. 62:2 (1995), 45–96

    MathSciNet  Google Scholar 

  24. A. Gathmann, Absolute and relative Gromov-Witten invariants of very ample hypersurfaces, preprint, 1999.

    Google Scholar 

  25. E. Getzler, Topological recursion relations in genus 2, in “Integrable Systems and Algebraic Geometry” (Kobe/ Kyoto, 1997), World Science Publishing (1998), 73–106.

    Google Scholar 

  26. E. Giroux, Une structure de contact, même tendue est plus ou moins tordue, Ann. Scient. Ec. Norm. Sup. 27 (1994), 697–705.

    MATH  MathSciNet  Google Scholar 

  27. A. Givental, Nonlinear generalization of the Maslov index, Adv. Soviet Math. 1 (1990), 71–103.

    MathSciNet  Google Scholar 

  28. A. Givental, A symplectic fixed point theorem for toric manifolds, in “The Floer Memorial Volume”, Progr. Math., 133, Birkhäuser, Basel (1995), 445–481.

    MathSciNet  Google Scholar 

  29. A. Givental, Homological geometry and mirror symmetry, Proc. Int. Congress of Math., Zürich-1994, Birkhäuser, 1 (1995), 472–480.

    Google Scholar 

  30. A. Givental, Homological geometry I: Projective hypersurfaces, Selecta Math. 1:2 (1995), 325–345.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Givental, Equivariant Gromov-Witten invariants, Intern. Math. Res. Notices 13 (1996), 613–663.

    Article  MathSciNet  Google Scholar 

  32. A. Givental, B. Kim, Quantum cohomology of flag manifolds and Toda lattices, Commun. Math. Phys. 168:3 (1995), 609–641.

    Article  MATH  MathSciNet  Google Scholar 

  33. T. Graber, R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), 487–518.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.W. Gray, Some global properties of contact structures, Annals of Math. 69 (1959), 421–450.

    Article  Google Scholar 

  35. M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Gromov, Partial Differential Relations, Springer-Verlag, 1986.

    Google Scholar 

  37. H. Hofer, Pseudo-holomorphic curves and Weinstein conjecture in dimension three, Invent. Math. 114 (1993), 515–563.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Hofer, K. Wysocki, E. Zehnder, Properties of pseudo-holomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré, Anal. Non Lineaire 13 (1996), 337–379.

    MATH  MathSciNet  Google Scholar 

  39. H. Hofer, K. Wysocki, E. Zehnder, The dynamics on a strictly convex energy surface in R 4, Annals of Math. 148 (1998), 197–289.

    Article  MATH  MathSciNet  Google Scholar 

  40. H. Hofer, K. Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, preprint, 1999.

    Google Scholar 

  41. E.-N. Ionel, Topological recursive relations in H 2g(M g, n), preprint, 1999.

    Google Scholar 

  42. E.-N. Ionel, T.H. Parker, Gromov-Witten invariants of symplectic sums, Math. Res. Lett. 5 (1998), 563–576.

    MATH  MathSciNet  Google Scholar 

  43. E.-N. Ionel, T.H. Parker, Relative Gromov-Witten invariants, preprint, 1999.

    Google Scholar 

  44. J. Kollar, Rational curves on algebraic varieties, Springer-Verlag, 1996.

    Google Scholar 

  45. M. Kontsevich, Enumeration of rational curves via torus action, in “The Moduli Space of Curves” (R. Dijgraaf, C. Faber and G. van der Geer, eds.), Birkhauser (1995), 335–368.

    Google Scholar 

  46. M. Kontsevich, Deformation quantization of Poisson manifolds, I, preprint, 1997.

    Google Scholar 

  47. M. Kontsevich, Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun.Math.Phys. 164 (1994), 525–562.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, in “Topics in Symplectic 4-Manifolds” (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Internat. Press, Cambridge, MA (1998), 47–83.

    Google Scholar 

  49. G. Liu, G. Tian, Floer homology and Arnold conjecture, J. Diff. Geom. 49 (1998), 1–74.

    MATH  MathSciNet  Google Scholar 

  50. R. Lutz, Structures de contact sur les fibrés principaux en cercles de dimension 3, Ann. Inst. Fourier, XXVII, 3 (1977), 1–15.

    MathSciNet  Google Scholar 

  51. J. Martinet, Formes de contact sur les variétés de dimension 3, Lecture Notes in Math. 209 (1971), 142–163.

    Article  MathSciNet  Google Scholar 

  52. D. McDuff, The virtual moduli cycle, in “Northern California Symplectic Geometry Seminar”, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI (1999), 73–102.

    MathSciNet  Google Scholar 

  53. S. Morita, A topological classification of complex structures on S 1 × σ2n−1, Topology 14 (1975), 13–22.

    Article  MATH  MathSciNet  Google Scholar 

  54. Y. Myayoka, S. Mori, A numerical criterion for uniruleness, Annals of Math 124 (1986), 65–69.

    Article  Google Scholar 

  55. L. Ng, On invariants of Legendrian knots, preprint, 2000.

    Google Scholar 

  56. J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (1993), 827–844.

    Article  MATH  MathSciNet  Google Scholar 

  57. Y. Ruan, Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996), 461–500.

    Article  MATH  MathSciNet  Google Scholar 

  58. Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gökova Geometry-Topology Conference, Turkish J. Math. 23 (1999), 161–231.

    MATH  MathSciNet  Google Scholar 

  59. Y. Ruan, A.-M. Li, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds I, preprint, 1999.

    Google Scholar 

  60. Y. Ruan, G. Tian, A mathematical theory of quantum cohomology, J. Diff. Geom. 42 (1995), 259–367.

    MATH  MathSciNet  Google Scholar 

  61. D. Salamon, Lectures on Floer homology, in “Symplectic Geometry and Topology”, IAS/Park City Mathematics Series, vol. 7, AMS/IAS (1999), 144–229.

    MathSciNet  Google Scholar 

  62. B. Slebert, Gromov-Witten invariants of general symplectic manifolds, preprint, 1997.

    Google Scholar 

  63. I. Ustilovsky, Infinitely many contact structures on S 4m+1, Int. Math. Res. Notices 14 (1999), 781–791.

    Article  MathSciNet  Google Scholar 

  64. R. Vakil, The enumerative geometry of rational and elliptic curves in projective space, preprint, 1997.

    Google Scholar 

  65. C. Vlterbo, in preparation.

    Google Scholar 

  66. A. Weinstein, On the hypotheses of Rabinowitz’s periodic orbits theorems, J. Diff. Eq. 33 (1979), 353–358.

    Article  MATH  Google Scholar 

  67. E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982), 661–692.

    MATH  MathSciNet  Google Scholar 

  68. E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in Diff. Geom. 1 (1991), 243–310.

    MathSciNet  Google Scholar 

  69. M.-L. Yau, Contact homology of subcritical Stein manifolds, thesis, Stanford University, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Eliashberg, Y., Glvental, A., Hofer, H. (2000). Introduction to Symplectic Field Theory. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0425-3_4

Download citation

Publish with us

Policies and ethics