Skip to main content

The Spaces \(B^s _{pq} \) and \(F^s _{pq} \) :Definitions and Characterizations

  • Chapter
  • First Online:
Theory of Function Spaces II

Part of the book series: Modern Birkhäuser Classics ((MBC))

  • 1684 Accesses

Abstract

It was the aim of the first chapter to look at function spaces from a historical point of view and to convince the reader that the two scales \(B^s _{pq} \) and \(F^s _{pq} \) occupy the very heart of the theory of function spaces. In the present chapter and the following one we develop systematically the technical part of the theory of the spaces \(B^s _{pq} \) and \(F^s _{pq} \) on \(\mathbb{R}^n\) as it stands at the end of the eighties. The remaining chapters rest on these fundamentals. Our recent approach, compared with earlier ones, for example in [Triß], not to speak about [Triα], can be described as follows. We give rather general and, unfortunately, highly technical characterizations of the spaces \(F^s _{pq} \) and \(B^s _{pq} \) which more or less cover desirable concrete characterizations, for example, via differences or derivatives of functions, or via harmonic or thermic extensions, and which also provide the basis for later applications. This will be done in 2.4 for \(F^s _{pq} \) and in 2.5 for \(B^s _{pq} \), always with a preference of the more complicated spaces \(F^s _{pq} \). In this sense, 2.4 and 2.5 may be considered as the heart of the present chapter. Characterizations of some spaces \(F^s _{pq} \) and \(B^s _{pq} \) in terms of differences of functions, or as harmonic or thermic extensions are known, for example, we derived them in [Triß] by rather specific and sometimes quite tricky arguments. Now we return in 2.6 to this subject, but this time as consequences of the characterizations in 2.4 and 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Boman, J., Equivalence of generalized moduli of continuity, Ark. Mat. 18 (1980), 73–100.

    Article  Google Scholar 

  2. Bourdaud, G., Localisation et multiplicateurs des espaces de Sobolev homogenes. Manuscripta Math. 60 (1988), 93–130.

    Article  Google Scholar 

  3. Bui, H.Q., On Besov, Hardy and Triebel spaces for 0 < p < 1. Ark. Mat. 21 (1983), 159–184.

    Google Scholar 

  4. Calderón, A.P. and Torchinsky, A., Parabolic maximal functions associated with a distribution, I,II. Advances in Math. 16 (1975), 1–64, and 24 (1977), 101–171.

    Article  Google Scholar 

  5. Fefferman, C. and Stein, E.M., Some maximal inequalities. Amer. J. Math. 93 (1971), 107–115.

    Article  Google Scholar 

  6. Fefferman, C. and Stein, E.M., H p spaces of several variables. Acta Math. 129 (1972), 137–193.

    Article  Google Scholar 

  7. Hardy, G.H. and Littlewood, J.E., A maximal theorem with functiontheoretical applications. Acta Math. 54 (1930), 81–116.

    Article  Google Scholar 

  8. Hinz, A.M. and Kalf, H., Subsolution estimates and Harnack’s inequality for Schrödinger operators. J. Reine Angew. Math. 404 (1990), 118–134.

    Google Scholar 

  9. Kaljabin, G.A., A characterization of certain function spaces by means of generalized differences (Russian). Dokl. Akad. Nauk SSSR 284 (1985), 1305–1308.

    Google Scholar 

  10. Kaljabin, G.A., Characterizations of spaces of Besov–Lizorkin–Triebel type by generalized differences (Russian). Trudy Mat. Inst. Steklov 181 (1988), 95–116.

    Google Scholar 

  11. Madych, W.R. and Rivière, N.M., Multipliers of the Hölder classes. J. Funct. Anal. 21 (1976), 369–379.

    Article  Google Scholar 

  12. Päivärinta, L., On the spaces \(L_p^A (l_q )\): Maximal inequalities and complex interpolation. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 25, Helsinki 1980.

    Google Scholar 

  13. Päivärinta, L., Equivalent quasi-norms and Fourier multipliers in the Triebel spaces \(F_{p,q}^s \). Math. Nachr. 106 (1982), 101–108.

    Article  Google Scholar 

  14. Peetre, J., New Thoughts on Besov Spaces. Duke Univ. Math. Series. Durham, Univ. 1976.

    Google Scholar 

  15. Rivière, N.M., Classes of smoothness, the Fourier method. Unpublished Lect. Notes.

    Google Scholar 

  16. Schmeisser, H.-J. and Triebel, H., Topics in Fourier Analysis and Function Spaces. Leipzig, Geest & Portig 1987, Chichester, Wiley 1987.

    Google Scholar 

  17. Shapiro, H.S., A Tauberian theorem related to approximation theory. Acta Math. 120 (1968), 279–292.

    Article  Google Scholar 

  18. Shapiro, H.S., Topics in Approximation Theory. Lect. Notes Math. 187, Berlin, Springer 1971.

    Google Scholar 

  19. Stein, E.M., Singular Integrals and Differentiability Properties of Functions. Princeton, Univ. Press 1970.

    Google Scholar 

  20. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutsch. Verl. Wissenschaften 1978, Amsterdam, North-Holland 1978.

    Google Scholar 

  21. Triebel, H., Theory of Function Spaces. Leipzig, Geest & Portig 1983, Basel, Birkhäuser 1983.

    Google Scholar 

  22. Triebel, H., Characterizations of Besov–Hardy–Sobolev spaces via harmonic functions, temperatures and related means. J. Approximation Theory 35 (1982), 275–297.

    Article  Google Scholar 

  23. Triebel, H., Characterizations of Besov–Hardy–Sobolev spaces: a unified approach. J. Approximation Theory 52 (1988), 162–203.

    Article  Google Scholar 

  24. Wiener, N., The ergodic theorem. Duke Math. J. 5 (1939), 1–18.

    Article  Google Scholar 

  25. Youssfi, A., Localisation des espaces de Besov et de Lizorkin–Triebel. Thesis, Univ. Paris VII, 1988.

    Google Scholar 

  26. Youssfi, A., Localisation des espaces de Lizorkin–Triebel homogènes. Math. Nachr. 147 (1990), 107–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Triebel .

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Basel

About this chapter

Cite this chapter

Triebel, H. (1992). The Spaces \(B^s _{pq} \) and \(F^s _{pq} \) :Definitions and Characterizations. In: Theory of Function Spaces II. Modern Birkhäuser Classics. Springer, Basel. https://doi.org/10.1007/978-3-0346-0419-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0346-0419-2_2

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0346-0418-5

  • Online ISBN: 978-3-0346-0419-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics