Lectures on the Moduli Stack of Vector Bundles on a Curve

  • Jochen Heinloth
Part of the Trends in Mathematics book series (TM)


These are lecture notes of a short course on the moduli stack of vector bundles on an algebraic curve. The aim of the course was to use this example to introduce the notion of algebraic stacks and to illustrate how one can work with these objects. Applications given are the (non-)existence of universal families on coarse moduli spaces and the computation of the cohomology of the moduli stack.

Mathematics Subject Classification (2000)

14D23 14H60 


Algebraic stack moduli space vector bundle cohomology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165–189.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M.F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. A 308 (1983), 523–615.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels in Geometry and Analysis (Bombay, 1992), 37–40, Tata Inst. Fund. Res., Bombay, 1995.Google Scholar
  4. [4]
    K.A. Behrend, The Lefschetz Trace Formula for the Moduli Space of Principal Bundles, PhD thesis, Berkeley, 1990, 96 pp., available at∼behrend/thesis.html.Google Scholar
  5. [5]
    K.A. Behrend, The Lefschetz trace formula for algebraic stacks, Invent. Math. 112 (1993), 127 49.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    K.A. Behrend, Derived ℓ-adic categories for algebraic stacks, Mem. Amer. Math. Soc. 163 (2003), no. 774, viii+93 pp.MathSciNetGoogle Scholar
  7. [7]
    K.A. Behrend, A. Dhillon, On the motive of the stack of bundles, Adv. Math. 212 (2007), 617–644.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    K.A. Behrend, A. Dhillon, Connected components of moduli stacks of torsors via Tamagawa numbers, Can. J. Math. 61 (2009), 3–28.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    E. Bifet, F. Ghione, M. Letizia, On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994), 641–672.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    I. Biswas, N. Hoffmann, The line bundles on moduli stacks of principal bundles on a curve, preprint, arXiv:0805.2915.Google Scholar
  11. [11]
    P. Deligne, Cohomologie Étale (SGA 41/2), Lecture Notes in Mathematics 569, Springer Verlag 1977.Google Scholar
  12. [12]
    A. Dhillon, On the cohomology of moduli of vector bundles and the Tamagawa number of SLn, Can. J. Math. 58 (2006), 1000–1025.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), 53–94.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    B. Fantechi, Stacks for everybody, European Congress of Mathematics, Vol. I (Barcelona, 2000), 349–359, Progr. Math., 201, Birkhäuser, Basel, 2001.Google Scholar
  15. [15]
    E.M. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies, 104, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1982, vii+190 pp.Google Scholar
  16. [16]
    R. Friedman, J.W. Morgan, On the converse to a theorem of Atiyah and Bott, J. Algebr. Geom. 11 (2002), 257–292.zbMATHMathSciNetGoogle Scholar
  17. [17]
    W. Fulton, Intersection theory, second edition, Springer Verlag, 1998.Google Scholar
  18. [18]
    T. Gómez, Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 1, 1–31.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Grothendieck et. al., Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003, xviii+327 pp.Google Scholar
  20. [20]
    G. Harder, M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1975), 215–48.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    G. Hein, Faltings’ construction of the moduli space, this volume.Google Scholar
  22. [22]
    J. Heinloth, Über den Modulstack der Vektorbündel auf Kurven, Diploma thesis, Bonn, 1998, 64 pp, available at∼hm0002/.Google Scholar
  23. [23]
    J. Heinloth, A.H.W. Schmitt, The Cohomology Ring of Moduli Stacks of Principal Bundles over Curves, preprint, available at∼hm0002/.Google Scholar
  24. [24]
    G. Laumon, L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 39, Springer-Verlag, Berlin, 2000, xii+208 pp.Google Scholar
  25. [25]
    G. Laumon, M. Rapoport, The Langlands lemma and the Betti numbers of stacks of G-bundles on a curve, Intern. J. Math. 7 (1996), 29–45.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 23–118.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    M. Olsson, Sheaves on Artin stacks, J. reine angew. Math. 603 (2007), 55–112.zbMATHMathSciNetGoogle Scholar
  28. [28]
    S. Ramanan, The moduli space of vector bundles on an algebraic curve, Math. Ann. 200 (1973), 69–84.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    C.S. Seshadri, Fibrés vectoriels sur les courbes algébriques, Astérisque 96 (1982).Google Scholar
  30. [30]
    D. Zagier, Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 445–462.Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  • Jochen Heinloth
    • 1
  1. 1.Korteweg-de Vries Institute for MathematicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations