Abstract
The emergence of a novel H1N1 virus in Mexico and the USA in spring 2009 and its rapid spread around the globe has led the World Health Organization to declare the first pandemic of the twenty-first century. Employing almost real-time sequencing technologies and disseminating this information freely and widely has permitted the most intensive investigation of the origins and evolution of an influenza pandemic in the history of this disease. The small levels of sequence diversity of the first isolates permitted a realistic estimate of when the 2009 H1N1 virus first entered the human population. The rate of change in influenza RNA sequences permitted several groups to trace the origins of this virus to swine and a reassortment of North American and Eurasian swine influenza. These virus strains in turn have been traced back to swine, avian, and human virus reassortments occurring years ago in swine, all the way back to the 1918–1930 H1N1 viruses. The influenza virus sequence information spans the dimensions of time (90 years), space (locations all over the world), and hosts (birds, humans, swine, etc.). The high evolutionary rate of this virus and the growing amount of information is allowing researchers to follow its changes in the search for possible factors that could contribute to an increase in its virulence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
CDC (2009) Swine influenza A (H1N1) infection in two children – Southern California, March--April 2009. MMWR 58:400–402
CDC (2009) Update: swine influenza A (H1N1) infections – California and Texas, April 2009. MMWR 58(Dispatch):1–3
http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html
Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82:596–601
Trifonov V, Khiabanian H, Greenbaum B, Rabadan R (2009) The origin of the recent swine influenza A(H1N1) virus infecting humans. Euro Surveill 14(17):pii=19193
Solovyov A, Palacios G, Briese T, Lipkin WI, Rabadan R (2009) Cluster analysis of the origins of the new influenza A(H1N1) virus. Euro Surveill 14(21):pii=19224
Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125
Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, Garten RJ, Gubareva LV, Xu X, Bridges CB, Uyeki TM (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360:2605–2615, Erratum in: N Engl J Med 2009 361:102
Trifonov V, Khiabanian H, Rabadan R (2009) Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N Engl J Med 361:115–119
Shinde V, Bridges CB, Uyeki TM et al (2009) Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 360:2616–2625
Chun J (1919) Influenza including its infection among pigs. Natl Med J 5:34–44
Dorset M, McBryde CN, Niles WB (1922) Remarks on hog flu. J Am Vet Med Assoc 62:162–171
Smith GJ, Bahl J, Vijaykrishna D, Zhang J, Poon LL, Chen H, Webster RG, Peiris JS, Guan Y (2009) Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci USA 106:11709–11712
Lindstrom SE, Cox N, Klimov A (2004) Evolutionary analysis of human H2N2 and early H3N2 viruses: evidence for genetic divergence and multiple reassortment among H2N2 and H3N2 viruses. Int Congr Ser 1263:184–190
Olsen CW (2002) The emergence of novel swine influenza viruses in North America. Virus Res 85:199–210
Vincent AL, Ma W, Lager KM, Janke BH, Richt JA (2008) Swine influenza viruses: a North American perspective. Adv Virus Res 72:127–154
Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann PA (1981) Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organ 59:75–78
Khiabanian H, Trifonov V, Rabadan R (2009) Reassortment patterns in swine influenza viruses. PLoS ONE 4(10):e7366
Ma W, Kahn RE, Richt JA (2009) The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med 3:158–166
Scholtissek C (1990) Pigs as “mixing vessels” for the creation of new pandemic influenza A viruses. Med Princ Pract 2:65–71
Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, Matrosovich MN, Olsen CW, Klimov AI (2005) Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 114:15–22
Rambaut A, Holmes E (2009) The early molecular epidemiology of the swine-origin A/H1N1 human influenza pandemic. PLoS Curr Influenza:RRN1003
Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453:615–619
Lemey P, Suchard M, Rambaut A (2009) Reconstructing the initial global spread of a human influenza pandemic: a Bayesian spatial-temporal model for the global spread of H1N1pdm. PLoS Curr Influenza:RRN1031
Parks DH, MacDonald NJ, Beiko RG (2009) Tracking the evolution and geographic spread of Influenza A. PLoS Curr Influenza:RRN1014
Nelson MI, Holmes EC (2008) The evolution of epidemic influenza. Nat Genet 8:196–205
Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373
Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373
Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155
Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436
van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 virus attachment to lower respiratory tract. Science 312:399
Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–1870
Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solórzano A, Pappas C, Cox NJ, Swayne DE, Palese P, Katz JM, García-Sastre A (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315:655–659
Kawaoka Y, Webster RG (1988) Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc Natl Acad Sci USA 85:324–328
Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67:1761–1764
Gabriel G, Abram M, Keiner B, Wagner R, Klenk HD, Stech J (2007) Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. J Virol 81:9601–9604
Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, García-Sastre A, Sasisekharan R, Katz JM, Tumpey TM (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci USA 106:3366–3371
Geiss GK, Salvatore M, Tumpey TM, Carter VS, Wang X, Basler CF, Taubenberger JK, Bumgarner RE, Palese P, Katze MG, García-Sastre A (2002) Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci USA 99:10736–10741
Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5:e1000252
Garcia-Sastre A (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–384
Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531
Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, Liu H, Sun Y, Pasparakis M, Kopf M, Mech C, Bavari S, Peiris JS, Slutsky AS, Akira S, Hultqvist M, Holmdahl R, Nicholls J, Jiang C, Binder CJ, Penninger JM (2008) Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–249
Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 105:4381–4386
Greenbaum BD, Levine AJ, Bhanot G, Rabadan R (2008) Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 4:e1000079
Greenbaum BD, Rabadan R, Levine AJ (2009) Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system. PLoS ONE 4:e5969
Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312
Conenello GM, Palese P (2007) Influenza A virus PB1-F2: a small protein with a big punch. Cell Host Microbe 2:207–209
Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:e141
Taia T, Wang R, Palese P (2009) Unraveling the mystery of swine influenza virus. Cell 137:983–985
Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870
Zamarin D, Garcia-Sastre A, Xiao X, Wang R, Palese P (2005) Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog 1:e4
Zamarin D, Ortigoza MB, Palese P (2006) Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J Virol 80:7976–7983
McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240–249
Trifonov V, Racaniello V, Rabadan R (2009) The contribution of the PB1-F2 protein to the fitness of influenza A viruses and its recent evolution in the 2009 influenza A (H1N1) pandemic virus. PLoS Curr Influenza:RRN1006
Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580
Obenauer JC, Fan Y, Naeve CW (2006) Response to comment on “Large-scale sequence analysis of avian influenza isolates”. Science 313:1573
Holmes EC, Lipman DJ, Zamarin D, Yewdell JW (2006) Comment on “Large-scale sequence analysis of avian influenza isolates”. Science 313:1573
Khiabanian H, Farrell G, St. George K, Rabadan R (2009) Differences in patient age distribution between influenza A subtypes. PLoS ONE 4(8):e6832
CDC (2009) Novel H1N1 flu: facts and figures. CDC, Atlanta. Available at http://www.cdc.gov/H1N1FLU/surveillanceqa.htm
Kelly H, Grant K, Williams S, Smith D (2009) H1N1 swine origin influenza infection in the United States and Europe in 2009 may be similar to H1N1 seasonal influenza infection in two Australian states in 2007 and 2008. Influenza Other Respir Viruses 3:183–188
CDC (2009) Serum cross-reactive antibody response to a novel influenza A (H1N1) virus after vaccination with seasonal influenza vaccine. MMWR Morb Mortal Wkly Rep 58(19):521–524
Rabadan R, Mostashari F, Calman N, Hripcsak G (2009) Next generation syndromic surveillance: molecular epidemiology, electronic health records and the pandemic influenza A (H1N1) virus. PLoS Curr Influenza:RRN1012
Acknowledgments
B. Greenbaum would like to acknowledge the support of Eric and Wendy Schmidt. R. Rabadan and H. Khiabanian would like to acknowledge support from Eureka (Exceptional, Unconventional Research Enabling Knowledge Acceleration) grant number 1R01LM010140-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Birkhäuser Basel
About this chapter
Cite this chapter
Greenbaum, B., Trifonov, V., Khiabanian, H., Levine, A., Rabadan, R. (2011). The Emergence of 2009 H1N1 Pandemic Influenza. In: Rappuoli, R., Del Giudice, G. (eds) Influenza Vaccines for the Future. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0279-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-0346-0279-2_5
Published:
Publisher Name: Springer, Basel
Print ISBN: 978-3-0346-0278-5
Online ISBN: 978-3-0346-0279-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)