Skip to main content

Cell Culture-Derived Influenza Vaccines

  • Chapter
  • First Online:
Influenza Vaccines for the Future

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Conventional egg-based vaccine manufacture has provided decades of safe and effective influenza vaccines using the technologies of the 1930–1960s. Concerns over the vulnerability of the egg supply in the case of a pandemic with a high pathogenicity avian influenza strain have spurred the development and licensure of mammalian cell culture-based influenza vaccines, the first major technological innovation in influenza vaccine since the mid-twentieth century. Mammalian cell culture provides a readily expansible, secure substrate for influenza vaccine manufacture, free from the need to suppress the bioburden associated with eggs. Most current cell culture-based vaccines still rely on seed viruses isolated in eggs. Conversion to a fully egg-free process is likely to increase the range of seed viruses available and improve the match between vaccine seed strains and circulating strains. The risk of adventitious agent introduction during manufacture in thoroughly characterized mammalian cell substrates is certainly low and probably significantly lower than the risks in egg-based manufacture. In clinical trials, cell-based influenza vaccines have proven safe and equivalent in immunogenicity to egg-based influenza vaccines. The higher containment that is possible with cell-based production proved valuable during the 2009 pandemic, when large-scale production of vaccine bulks could begin in cell culture manufacturing systems at biosafety level 3, while egg-based production was delayed, waiting for the biosafety level of the pandemic stain to be decreased. For cell-based production to replace egg-based production of influenza vaccine, the new technology will need to demonstrate its robustness over multiple strain changes and its economic competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oxford J, Lambkin-Williams W, Gilbert A (2008) Influenza vaccines have a short but illustrious history. In: Rappuoli R, Del Giudice G (eds) Influenza vaccines for the future. Birkhaeuser, Basel, pp 31–64

    Chapter  Google Scholar 

  2. Nicolson C, Major D, Wood JM, Robertson JS (2005) Generation of influenza vaccine viruses on Vero cells by reverse genetics: an H5N1 candidate vaccine strain produced under a quality system. Vaccine 23:2943–2952

    Article  PubMed  CAS  Google Scholar 

  3. Burnet FM (1941) Growth of influenza virus in the allantoic cavity of the chick embryo. Aust J Exp Biol Med Sci 19:291–295

    Article  Google Scholar 

  4. Davenport FM, Hennessy AV, Brandon FM, Webster RG, Barrett CD Jr, Lease GO (1964) Comparisons of serological and febrile responses in humans to vaccination with influenza viruses or their hemagglutinins. J Lab Clin Med 63:5–13

    PubMed  CAS  Google Scholar 

  5. Alexandrova GI, Smorodintsev AA (1965) Obtaining of an additionally attenuated vaccinating cryophilic influenza strain. Roum Rev Inframicrobiol 2:179

    Google Scholar 

  6. Reimer CB, Baker RS, Van Frank RM, Newlin TE, Cline GB, Anderson NG (1967) Purification of large quantities of influenza virus by density gradient centrifugation. J Virol 1:1207–1216

    PubMed  CAS  Google Scholar 

  7. Kilbourne ED (1969) Future influenza vaccines and use of genetic recombinants. Bull WHO 41:643–645

    PubMed  CAS  Google Scholar 

  8. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    PubMed  CAS  Google Scholar 

  9. Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23

    Article  PubMed  CAS  Google Scholar 

  10. Shibya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airways. Nature 440:435–436

    Article  Google Scholar 

  11. Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, Tumpey TM, Sasisekharan V, Sasisekharan R (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nat Biotechnol 26:107–113

    Article  PubMed  CAS  Google Scholar 

  12. Eisen MB, Sabesan S, Skehel JJ, Wiley DC (1997) Binding of the influenza A virus to cell-surface receptors: sstructures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. Virology 232:19–31

    Article  PubMed  CAS  Google Scholar 

  13. Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC (1983) Single amino acid substitutions in influenza hemagglutinin change receptor binding specificity. Nature 304:76–78

    Article  PubMed  CAS  Google Scholar 

  14. Ito T, Sizuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y (1997) Differences in sialic acid-galactose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71:3357–3363

    PubMed  CAS  Google Scholar 

  15. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza hemagglutinin and their involvement in antigenic variation. Nature 289:373–378

    Article  PubMed  CAS  Google Scholar 

  16. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  PubMed  CAS  Google Scholar 

  17. Knossow M, Gaudier M, Douglas A, Barrère B, Bizebard T, Barbey C, Gigant B, Skehel JJ (2002) Mechanism of neutralization of influenza virus infectivity by antibodies. Virology 302:294–298

    Article  PubMed  CAS  Google Scholar 

  18. Robertson JS, Nicolson C, Major D, Robertson EW, Wood JM (1993) The role of amniotic passage in the egg-adaptation of human influenza virus is revealed by haemagglutinin sequence analyses. J Gen Virol 74:2047–2051

    Article  PubMed  CAS  Google Scholar 

  19. Schild GC, Oxford JS, de Jong JC (1983) Evidence of host-cell selection of influenza virus antigenic variants. Nature 303:706–709

    Article  PubMed  CAS  Google Scholar 

  20. Katz JM, Wang M, Webster RG (1990) Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus. J Virol 64:1808–1811

    PubMed  CAS  Google Scholar 

  21. Robertson JS, Naeve CW, Webster RG, Bootman JS, Newman R, Schild GC (1985) Alterations in the hemagglutinin associated with adaptation of influenza B virus to growth in eggs. Virology 143:166–174

    Article  PubMed  CAS  Google Scholar 

  22. Katz JM, Naeve CW, Webster RG (1987) Host cell-mediated variation in H3N2 influenza viruses. Virology 156:386–395

    Article  PubMed  CAS  Google Scholar 

  23. Mastrosovich M, Mastrosovich T, Carr J, Roberts NA, Klenk HD (2003) Overexpression of the alpha-2, 6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase. J Virol 77:8418–8425

    Article  Google Scholar 

  24. Oh DY, Barr IG, Mosse JA, Laurie KL (2008) MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clin Microbiol 46:2189–2194

    Article  PubMed  CAS  Google Scholar 

  25. Minor PD, Engelhardt OG, Wood JM, Robertson JS, Blayer S, Colegate T, Fabry L, Heldens JG, Kino Y, Kistner O, Kompier R, Makizumi K, Medema J, Mimori S, Ryan D, Schwarz R, Smith JS, Sugawara K, Trusheim H, Tsai TF, Krause R (2009) Current challenges in implementing cell-derived influenza vaccines: implications for production and regulation, July 2007, NIBSC, Potters Bar, UK. Vaccine 27:2907–2913

    Article  PubMed  Google Scholar 

  26. Widjaja L, Ilyushina N, Webster RG, Webby RJ (2006) Molecular changes associated with adaptation of human influenza A virus in embryonated chicken eggs. Virology 350:137–145

    Article  PubMed  CAS  Google Scholar 

  27. CDC (2004) Preliminary assessment of the effectiveness of the 2003–2004 inactivated influenza vaccine – Colorado, December 2003. MMWR Morb Mortal Wkly Rep 53:8–11

    Google Scholar 

  28. CDC (2004) Update: influenza-associated deaths reported among children aged <18 years – United States, 2003–2004 influenza season. MMWR Morb Mortal Wkly Rep 52:1286–1288

    Google Scholar 

  29. Katz JM, Webster RG (1989) Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J Infect Dis 160:191–198

    Article  PubMed  CAS  Google Scholar 

  30. (1995) Cell culture as a substrate for the production of influenza vaccines: memorandum from a WHO meeting. Bull World Health Org 73: 431–435

    Google Scholar 

  31. Maassab HF (1969) Biological and immunologic characteristics of cold-adapted influenza virus. J Immunol 102:728–732

    PubMed  CAS  Google Scholar 

  32. Watanabe T, Watanabe S, Shinya K, Kim JH, Hatta M, Kawaoka Y (2009) Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc Natl Acad Sci USA 106:588–592

    Article  PubMed  CAS  Google Scholar 

  33. Grimm D, Staeheli P, Hufbauer M, Koemer I, Martinez-Sobrido L, Solorzano A, Garcia-Sastre A, Haller O, Kochs G (2007) Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci USA 104:6806–6811

    Article  PubMed  CAS  Google Scholar 

  34. Talon J, Salvatore M, O’Neill RE, Nakaya Y, Zheng H, Muster T, Garcia-Sastre A, Palese P (2000) Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Natl Acad Sci USA 97:4309–4314

    Article  PubMed  CAS  Google Scholar 

  35. Wacheck V, Egorov A, Groiss F, Pfeiffer A, Fuereder T, Hoeffmayer D, Kundl M, Popow-Kraupp T, Redberger-Fritz M, Mueller CA, Cinatl J, Michaelis M, Geiler J, Bergmann M, Romanova J, Roethl E, Morokutti A, Wolschek M, Ferko B, Seipetl J, Dick-Gudenus R, Muster T (2010) A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J Infect Dis 201:354–362

    Article  PubMed  CAS  Google Scholar 

  36. Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330

    Article  PubMed  CAS  Google Scholar 

  37. Shah K, Nathanson N (1976) Human exposure to SV40: review and comment. Am J Epidemiol 103:1–12

    PubMed  CAS  Google Scholar 

  38. Stratton K, Almario DA, McCormick M (eds) (2002) Institute of medicine report. Immunization safety review: SV40 contamination of poliovaccine and cancer. The National Academy of Sciences, Washington, DC

    Google Scholar 

  39. Miyazawa T (2010) Endogenous retroviruses as potential hazards for vaccines. Biologicals. doi: 10.1016j

    Google Scholar 

  40. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (2010) Guidance for industry. Characterization and qualification of cell substrates and other biological materials used in the production of viral vaccines for infectious disease indications. Office of Communication, Outreach, and Development, Rockville, MD

    Google Scholar 

  41. Gregersen JP (2008) A risk assessment model to rate the occurrence and relevance of adventitious agents in the production of influenza vaccines. Vaccine 26:3297–3304

    Article  PubMed  CAS  Google Scholar 

  42. Scholtissek C, Stech J, Krauss S, Webster RG (2002) Cooperation between the hemagglutinin of avian viruses and the matrix protein of human influenza A viruses. J Virol 76:1781–1786

    Article  PubMed  CAS  Google Scholar 

  43. Wood JM, Robertson JS (2004) From lethal to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol 2:842–847

    Article  PubMed  CAS  Google Scholar 

  44. Smith HO, Hutchison CA, Pfannkoch C, Venter JC (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100:15440–15445

    Article  PubMed  CAS  Google Scholar 

  45. Patriarca P (2007) Use of cell lines for the production of influenza virus vaccines: an appraisal of technical, manufacturing, and regulatory considerations. IVR/WHO report, Geneva, Switzerland

    Google Scholar 

  46. Genzel Y, Reichel U (2009) Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines 8:1681–1692

    Article  PubMed  CAS  Google Scholar 

  47. Tripp RA, Tompkins SM (2008) Recombinant vaccines for influenza virus. Curr Opin Investig Drugs 9:836–845

    PubMed  CAS  Google Scholar 

  48. Doroshenko A, Halperin S (2009) Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis vaccines). Expert Rev Vaccines 8:679–688

    Article  PubMed  CAS  Google Scholar 

  49. Barrett PN, Mundt W, Kistner O, Howard MK (2009) Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines 8:607–618

    Article  PubMed  CAS  Google Scholar 

  50. Levenbook IS, Petricciani JC, Elisberg BL (1984) Tumorigenicity of Vero cells. J Biol Stand 12:391–398

    Article  PubMed  CAS  Google Scholar 

  51. Shin SI, Freedman VH, Risser R, Pollack R (1975) Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci USA 72:4435–4439

    Article  PubMed  CAS  Google Scholar 

  52. Keenan J, Pearson D, Clynes M (2006) The role of recombinant proteins in the development of serum-free media. Cytotechnology 50:49–56

    Article  PubMed  CAS  Google Scholar 

  53. Schulze-Horsel J, Schulze M, Agalaridis G, Genzal U, Reichl U (2009) Infection dynamics and virus-induced apoptosis in cell culture-based influenza vaccine production – flow cytometry and mathematical modeling. Vaccine 27:2712–2722

    Article  PubMed  CAS  Google Scholar 

  54. Centers for Disease Control and Prevention (CDC) (2004) Updated interim influenza vaccination recommendations – 2004–05 influenza season. MMWR Morb Mortal Wkly Rep 53:1183–1184

    Google Scholar 

  55. Chiron (2005) Use of MDCK cells for the manufacture of inactivated influenza virus vaccines. VRBPAC 16 Nov 05 meeting. Available from http://www.fda.gov/ohrms/dockets/ac/05/slides/5-4188S1_5.pdf

  56. Petricciani JC, Regan PJ (1987) Risk of neoplastic transformation from cellular DNA: calculations using the oncogene model. Dev Biol Stand 68:43–49

    PubMed  CAS  Google Scholar 

  57. Morgeaux S, Tordo N, Gontier C, Perrin P (1993) Beta-propiolactone treatment impairs the biological activity of residual DNA from BHK-21 cells infected with rabies virus. Vaccine 11:82–90

    Article  PubMed  CAS  Google Scholar 

  58. Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F (2001) The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines. Vaccine 19:2716–2721

    Article  PubMed  CAS  Google Scholar 

  59. Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cell. J Exp Med 13:397–411

    Article  PubMed  CAS  Google Scholar 

  60. Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173

    Article  PubMed  CAS  Google Scholar 

  61. Schild GC, Wood JM, Newman RW (1975) A single radial immunodiffusion technique for the assay of haemagglutinin antigen. WHO Bull 52:223–231

    CAS  Google Scholar 

  62. Wood JM, Dunleavy U, Newman RW, Riley AM, Robertson JS, Minor PD (1999) The influence of the host cell on standardization of influenza vaccine potency. Dev Biol Stand 98:183–188

    PubMed  CAS  Google Scholar 

  63. Szymczakiewicz-Multanowska A, Groth N, Bugarini R, Lattanzi M, Casula D, Hilbert A, Tsai T, Podda A (2009) Safety and immunogenicity of a novel influenza subunit vaccine produced in mammalian cell culture. J Infect Dis 200:841–848

    Article  PubMed  Google Scholar 

  64. Keitel W, Groth N, Lattanzi M, Praus M, Hilbert AK, Borkowski A, Tsai TF (2010) Dose ranging of adjuvant and antigen in a cell culture H5N1 influenza vaccine: safety and immunogenicity of a phase 1/2 clinical trial. Vaccine 28:840–848

    Article  PubMed  CAS  Google Scholar 

  65. Ehrlich HJ, Muller M, Oh HM, Tambyah PA, Joukhadar C, Montomoli E, Fisher D, Berezuk G, Fritsch S, Low-Baselli A, Vartian N, Bobrovsky R, Pavlova BG, Pollabauer EM, Kistner O, Barrett PN, Baxter H5N1 Pandemic Influenza Vaccine Clinical Study Team (2008) A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. New Engl J Med 358:2573–2584

    Article  PubMed  CAS  Google Scholar 

  66. Clark TW, Pareek M, Hoschler K, Dillon H, Nicholson KG, Groth N, Stephenson I (2009) Trial of 2009 influenza A (H1N1) monovalent MF59-adjuvanted vaccine. New Engl J Med 361:2424–2435

    Article  PubMed  CAS  Google Scholar 

  67. Reisinger KS, Block SL, Izu A, Groth N, Holmes SJ (2009) Subunit influenza vaccines produced from cell culture or in embryonated chicken eggs: comparison of safety reactogenicity, and immunogenicity. J Infect Dis 200:849–857

    Article  PubMed  Google Scholar 

  68. Kistner O, Barrett PN, Mundt W, Schober-Bendixen S, Dorner F (1998) Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16:960–968

    Article  PubMed  CAS  Google Scholar 

  69. Halperin SA, Smith B, Mabrouk T, Germain M, Trepanier P, Hassell T, Treanor J, Gauthier R, Mills EL (2002) Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine 20:1240–1247

    Article  PubMed  CAS  Google Scholar 

  70. Palache AM, Scheepers HSJ, de Regt V, van Ewijk P, Baljet M, Brands R, van Scharrenburg GJM (1999) Safety, reactogenicity, and immunogenicity of Madin Darby canine kidney cell-derived inactivated influenza subunit vaccine. A meta-analysis of clinical studies. Dev Biol Stand 98:115–125

    PubMed  CAS  Google Scholar 

  71. Groth N, Montomoli E, Gentile C, Manini I, Bugarini R, Podda A (2009) Safety, tolerability and immunogenicity of a mammalian cell-culture-derived influenza vaccine: a sequential phase I and phase II clinical trial. Vaccine 27:786–791

    Article  PubMed  CAS  Google Scholar 

  72. Palache AM, Brands R, van Scharrenburg GJ (1997) Immunogenicity and reactogenicity of influenza subunit vaccines produced in MDCK cells or fertilized chicken eggs. J Infect Dis 176(Suppl 1):S20–S23

    Article  PubMed  Google Scholar 

  73. Halperin SA, Nestruck AC, Eastwood BJ (1998) Safety and immunogenicity of a new influenza vaccine grown in mammalian cell culture. Vaccine 16:1331–1335

    Article  PubMed  CAS  Google Scholar 

  74. Ehrlich HJ, Muller M, Fritsch S, Zeitlinger M, Berezuk G, Low-Baselli A, van der Velden MV, Pollbauer EM, Martisch F, Pavlova BG, Tambyah PA, Oh HM, Montomoli E, Kistner O, Noel Barrett P (2009) A cell culture (Vero)-derived H5N1 whole-virus vaccine induces cross-reactive memory responses. J Infect Dis 200:1113–1138

    Article  PubMed  CAS  Google Scholar 

  75. Wei CJ, Boyington JC, Dai K, Houser KV, Pearce MB, Kong WP, Yang ZY, Tumpey TM, Nabel GJ (2010) Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design. Sci Transl Med 24:24ra21

    Article  Google Scholar 

  76. Scharzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, Reichl U (2009) Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin. Vaccine 27:4325–4336

    Article  Google Scholar 

  77. Tey D, Heine RG (2009) Egg allergy in childhood: an update. Curr Opin Allergy Clin Immunol 9:244–250

    Article  PubMed  CAS  Google Scholar 

  78. Tubiolo VC, Beall GN (1997) Dog allergy: understanding our ‘best friend’? Clin Exp Allergy 27:354–357

    Article  PubMed  CAS  Google Scholar 

  79. Wanich N, Bencharitiwong R, Tsai T, Nowak-Wegrzyn AH (2009) In vitro assessment of the allergenicity of novel influenza vaccine produced in dog kidney cells in subjects with dog allergy. J Allergy Clin Immunol 123:S114

    Article  Google Scholar 

  80. Ronmark E, Perzanowski M, Platts-Mills T, Lundback B (2003) Four-year incidence of allergic sensitization among schoolchildren in a community where allergy to cat and dog dominates sensitization: Report from the Obstructive Lung Disease in Northern Sweden Study Group. J Allergy Clin Immunol 112:747–754

    Article  PubMed  Google Scholar 

  81. Novartis Media Releases (2009) US Department of Health and Human Services awards Novartis USD 486 million contract to build manufacturing facility for pandemic flu vaccine. http://www.novartis.com/newsroom/media-releases/en/2009/1282432.shtml

  82. Kock M, Seemann G (2008) Fertile eggs – a valuable product for vaccine production. Lohmann Inf 43:37–40

    Google Scholar 

Download references

Acknowledgments

I thank Giuseppe Del Giudice (Novartis Vaccines and Diagnostics) for his contribution to this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Dormitzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Birkhäuser Basel

About this chapter

Cite this chapter

Dormitzer, P.R. (2011). Cell Culture-Derived Influenza Vaccines. In: Rappuoli, R., Del Giudice, G. (eds) Influenza Vaccines for the Future. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0279-2_12

Download citation

Publish with us

Policies and ethics