Skip to main content

Basic Science Paves the Way to Novel Safe and Effective Pestivirus Vaccines

  • 845 Accesses

Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Pestiviruses are among the economically most important pathogens of livestock. Except for culling, vaccination represents the only feasible way to control pestiviruses. Therefore, a considerable number of pestivirus vaccines have been developed and put on the market. However, these vaccines still have disadvantages that should be eliminated in future approaches, some of which are based on recent findings and will be outlined in this chapter. One of the most important features of ruminant pestiviruses is their extraordinary tendency to establish lifelong persistence as the outcome of intrauterine infection. As a result, 1–2% of cattle worldwide are persistently infected with bovine viral diarrhea virus. The constant dissemination of the virus by these animals is central for maintenance of this pathogen in its host population; therefore, future vaccines must address this highly relevant problem. Elucidation of the molecular features of pestiviruses that are required for the establishment and maintenance of persistent infection has made significant progress, and the present knowledge on this topic is summarized in this chapter. These features include a unique strategy to restrict virus genome replication by a limiting host factor and viral virulence factors Npro and Erns interfering with the innate immune response of the host. Accordingly, a framework of viral functions is involved in the establishment and maintenance of persistence. On the basis of this knowledge, specific mutations in the recently identified virulence factors have resulted in the generation of attenuated viruses, building a perfect basis for future vaccine design.

Keywords

  • Internal Ribosome Entry Site
  • Bovine Viral Diarrhea Virus
  • Classical Swine Fever Virus
  • Interferon Response
  • Pregnant Animal

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-0346-0277-8_7
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-0346-0277-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  1. Lindenbach BD, Thiel HJ, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1101–1152

    Google Scholar 

  2. Avalos-Ramirez R, Orlich M, Thiel H-J, Becher P (2001) Evidence for the presence of two novel pestivirus species. Virology 286:456–465

    CAS  PubMed  Google Scholar 

  3. Gillespie JH, Baker JA, McEntee K (1960) A cytopathogenic strain of virus diarrhea virus. Cornell Vet 50:73–79

    CAS  PubMed  Google Scholar 

  4. Baker JC (1987) Bovine viral diarrhea virus: a review. J Am Vet Med Assoc 190:1449–1458

    CAS  PubMed  Google Scholar 

  5. Risatti GR et al (2005) The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 79:3787–3796

    CAS  PubMed  Google Scholar 

  6. Risatti GR et al (2007) Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology 364:371–382

    CAS  PubMed  Google Scholar 

  7. Van Gennip HG, Vlot AC, Hulst MM, De Smit AJ, Moormann RJ (2004) Determinants of virulence of classical swine fever virus strain Brescia. J Virol 78:8812–8823

    PubMed  Google Scholar 

  8. Becher P, Orlich M, Thiel H-J (2001) RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. J Virol 75:6256–6264

    CAS  PubMed  Google Scholar 

  9. Collett MS et al (1988) Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology 165:191–199

    CAS  Google Scholar 

  10. Renard A, Dino D, Martial J (1987) Vaccines and diagnostics derived from bovine diarrhea virus. European Patent application number 86870095.6:publication number 02.08672

    Google Scholar 

  11. Poole TL et al (1995) Pestivirus translation occurs by internal ribosome entry. Virology 206:750–754

    CAS  PubMed  Google Scholar 

  12. Thiel H-J, Stark R, Weiland E, Rümenapf T, Meyers G (1991) Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65:4705–4712

    CAS  PubMed  Google Scholar 

  13. Paton DJ, Lowings JP, Barrett AD (1992) Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus. Virology 190:763–772

    CAS  PubMed  Google Scholar 

  14. Weiland S, Ahl R, Stark R, Weiland F, Thiel H-J (1992) A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J Virol 66:3677–3682

    CAS  PubMed  Google Scholar 

  15. Weiland S et al (1990) Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disulfide linked heterodimer. J Virol 64:3563–3569

    CAS  PubMed  Google Scholar 

  16. van Rijn PA, van Gennip HG, de Meijer EJ, Moormann RJ (1993) Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J Gen Virol 74(10):2053–2060

    PubMed  Google Scholar 

  17. Donis RO, Corapi W, Dubovi EJ (1988) Neutralizing monoclonal antibodies to bovine viral diarrhoea virus bind to the 56K to 58K glycoprotein. J Gen Virol 69(1):77–86

    CAS  PubMed  Google Scholar 

  18. Maurer K, Krey T, Moennig V, Thiel HJ, Rumenapf T (2004) CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol 78:1792–1799

    CAS  PubMed  Google Scholar 

  19. Krey T et al (2006) Function of bovine CD46 as a cellular receptor for bovine viral diarrhea virus is determined by complement control protein 1. J Virol 80:3912–3922

    CAS  PubMed  Google Scholar 

  20. Hulst MM, van Gennip HG, Moormann RJ (2000) Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol 74:9553–9561

    CAS  PubMed  Google Scholar 

  21. Iqbal M, Flick-Smith H, McCauley JW (2000) Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans. J Gen Virol 81:451–459

    CAS  PubMed  Google Scholar 

  22. Iqbal M, McCauley JW (2002) Identification of the glycosaminoglycan-binding site on the glycoprotein E(rns) of bovine viral diarrhoea virus by site-directed mutagenesis. J Gen Virol 83:2153–2159

    CAS  PubMed  Google Scholar 

  23. Rumenapf T, Unger G, Strauss JH, Thiel HJ (1993) Processing of the envelope glycoproteins of pestiviruses. J Virol 67:3288–3294

    CAS  PubMed  Google Scholar 

  24. Fetzer C, Tews BA, Meyers G (2005) The carboxy-terminal sequence of the pestivirus glycoprotein E(rns) represents an unusual type of membrane anchor. J Virol 79:11901–11913

    CAS  PubMed  Google Scholar 

  25. Tews BA, Meyers G (2007) The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J Biol Chem 282:32730–32741

    CAS  PubMed  Google Scholar 

  26. Hulst MM, Himes G, Newbigin E, Moormann RJM (1994) Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200:558–565

    CAS  PubMed  Google Scholar 

  27. Schneider R, Unger G, Stark R, Schneider-Scherzer E, Thiel H-J (1993) Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261:1169–1171

    CAS  PubMed  Google Scholar 

  28. Windisch JM et al (1996) RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. J Virol 70:352–358

    CAS  PubMed  Google Scholar 

  29. Harada T, Tautz N, Thiel H-J (2000) E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 74:9498–9506

    CAS  PubMed  Google Scholar 

  30. Luik P et al (2009) The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci U S A 106:12712–12716

    CAS  PubMed  Google Scholar 

  31. Steinmann E et al (2007) Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 3:e103

    PubMed  Google Scholar 

  32. Griffin SD et al (2003) The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett 535:34–38

    CAS  PubMed  Google Scholar 

  33. Lackner T et al (2004) Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J Virol 78:10765–10775

    CAS  PubMed  Google Scholar 

  34. Agapov EV et al (1998) Noncytopathic sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 95:12989–12994

    CAS  PubMed  Google Scholar 

  35. Moulin HR et al (2007) Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 365:376–389

    CAS  PubMed  Google Scholar 

  36. Tautz N, Kaiser A, Thiel H-J (2000) NS3 serine protease of bovine viral diarrhea virus: characterization of active site residues, NS4A cofactor domain, and protease-cofactor interactions. Virology 273:351–363

    CAS  PubMed  Google Scholar 

  37. Wiskerchen M, Collett MS (1991) Pestivirus gene expression: protein p80 of bovine viral diarrhea virus is a proteinase involved in polyprotein processing. Virology 184:341–350

    CAS  PubMed  Google Scholar 

  38. Xu J et al (1997) Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol 71:5312–5322

    CAS  PubMed  Google Scholar 

  39. Tellinghuisen TL, Paulson MS, Rice CM (2006) The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. J Virol 80:7450–7458

    CAS  PubMed  Google Scholar 

  40. Zhong W, Gutshall LL, Del Vecchio AM (1998) Identification and characterization of an RNA-dependent RNA polymerase activity within the nonstructural protein 5B region of bovine viral diarrhea virus. J Virol 72:9365–9369

    CAS  PubMed  Google Scholar 

  41. Meyers G, Tautz N, Becher P, Thiel H-J, Kümmerer B (1996) Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J Virol 70:8606–8613

    CAS  PubMed  Google Scholar 

  42. Moormann RJM, van Gennip HGP, Miedema GKW, Hulst MM, van Rijn PA (1996) Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol 70:763–770

    CAS  PubMed  Google Scholar 

  43. Brownlie J, Clarke MC, Howard CJ (1984) Experimental production of fatal mucosal disease in cattle. Vet Rec 114:535–536

    CAS  PubMed  Google Scholar 

  44. Moennig V, Frey H-R, Liebler E, Polenz P, Liess B (1990) Reproduction of mucosal disease with cytopathogenic bovine viral diarrhoea virus selected in vitro. Vet Rec 127:200–203

    CAS  PubMed  Google Scholar 

  45. Brackenbury LS, Carr BV, Charleston B (2003) Aspects of the innate and adaptive immune responses to acute infections with BVDV. Vet Microbiol 96:337–344

    CAS  PubMed  Google Scholar 

  46. Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130

    CAS  PubMed  Google Scholar 

  47. Coria MF, McClurkin AW (1978) Specific immunotolerance in an apparently healthy bull persistently infected with BVD virus. J Am Vet Med Assoc 172:449–451

    CAS  PubMed  Google Scholar 

  48. Thiel H-J, Plagemann PGW, Moennig V (1996) Pestiviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, vol 1, 3rd edn. Lippincott Raven, Philadelphia, pp 1059–1073

    Google Scholar 

  49. Meyers G, Tautz N, Dubovi EJ, Thiel H-J (1996) Origin and diversity of cytopathogenic pestiviruses. International symposium of bovine viral diarrhea virus – a 50 year review.

    Google Scholar 

  50. Meyers G, Thiel H-J (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–117

    CAS  PubMed  Google Scholar 

  51. Kümmerer BM, Tautz N, Becher P, Thiel H-J, Meyers G (2000) The genetic basis for cytopathogenicity of pestiviruses. Vet Microbiol 77:117–128

    PubMed  Google Scholar 

  52. Tautz N, Meyers G, Thiel H-J (1993) Processing of poly-ubiquitin in the polyprotein of an RNA virus. Virology 197:74–85

    CAS  PubMed  Google Scholar 

  53. Meyers G et al (1992) Rearrangement of viral sequences in cytopathogenic pestiviruses. Virology 191:368–386

    CAS  PubMed  Google Scholar 

  54. Pocock DH, Howard CJ, Clarke MC, Brownlie J (1987) Variation in the intracellular polypeptide profiles from different isolates of bovine viral diarrhea virus. Arch Virol 94:43–53

    CAS  PubMed  Google Scholar 

  55. Mendez E, Ruggli N, Collett MS, Rice CM (1998) Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol 72:4737–4745

    CAS  PubMed  Google Scholar 

  56. Schweizer M, Peterhans E (2001) Noncytopathic bovine viral diarrhea virus inhibits double-stranded RNA-induced apoptosis and interferon synthesis. J Virol 75:4692–4698

    CAS  PubMed  Google Scholar 

  57. Lackner T, Muller A, Konig M, Thiel HJ, Tautz N (2005) Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J Virol 79:9746–9755

    CAS  PubMed  Google Scholar 

  58. Lackner T, Thiel HJ, Tautz N (2006) Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis. Proc Natl Acad Sci U S A 103:1510–1515

    CAS  PubMed  Google Scholar 

  59. Gallei A et al (2008) Cytopathogenicity of classical swine fever virus correlates with attenuation in the natural host. J Virol 82:9717–9729

    CAS  PubMed  Google Scholar 

  60. Müller A, Rinck G, Thiel H-J, Tautz N (2003) Cell-derived sequences located in the structural genes of a cytopathogenic pestivirus. J Virol 77:10663–10669

    PubMed  Google Scholar 

  61. Rinck G et al (2001) A cellular J-domain protein modulates polyprotein processing and cytopathogenicity of a pestivirus. J Virol 75:9470–9482

    CAS  PubMed  Google Scholar 

  62. Perler L, Schweizer M, Jungi TW, Peterhans E (2000) Bovine viral diarrhoea virus and bovine herpesvirus-1 prime uninfected macrophages for lipopolysaccharide-triggered apoptosis by interferon-dependent and -independent pathways. J Gen Virol 81:881–887

    CAS  PubMed  Google Scholar 

  63. Rümenapf T, Stark R, Heimann M, Thiel H-J (1998) N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J Virol 72:2544–2547

    PubMed  Google Scholar 

  64. Tratschin JD, Moser C, Ruggli N, Hofmann MA (1998) Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol 72:7681–7684

    CAS  PubMed  Google Scholar 

  65. Mittelholzer C, Moser C, Tratschin JD, Hofmann MA (2000) Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74:293–308

    CAS  Google Scholar 

  66. Mayer D, Hofmann MA, Tratschin JD (2004) Attenuation of classical swine fever virus by deletion of the viral N(pro) gene. Vaccine 22:317–328

    CAS  PubMed  Google Scholar 

  67. Ruggli N et al (2005) N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology 340:265–276

    CAS  PubMed  Google Scholar 

  68. Ruggli N et al (2003) Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol 77:7645–7654

    CAS  PubMed  Google Scholar 

  69. La Rocca SA et al (2005) Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol 79:7239–7247

    PubMed  Google Scholar 

  70. Gil LHVG et al (2006) The amino-terminal domain of bovine viral diarrhea virus Npro protein is necessary for alpha/beta interferon antagonism. J Virol 80:900–911

    CAS  PubMed  Google Scholar 

  71. Hilton L et al (2006) The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80:11723–11732

    CAS  PubMed  Google Scholar 

  72. Baigent SJ et al (2002) Inhibition of beta interferon transcription by noncytopathogenic bovine viral diarrhea virus is through an interferon regulatory factor 3-dependent mechanism. J Virol 76:8979–8988

    CAS  PubMed  Google Scholar 

  73. Bauhofer O et al (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096

    CAS  PubMed  Google Scholar 

  74. Seago J et al (2007) The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 88:3002–3006

    CAS  PubMed  Google Scholar 

  75. Chen Z et al (2007) Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366:277–292

    CAS  PubMed  Google Scholar 

  76. Szymanski MR et al (2009) Zinc binding in pestivirus N(pro) is required for interferon regulatory factor 3 interaction and degradation. J Mol Biol 391:438–449

    CAS  PubMed  Google Scholar 

  77. Ruggli N et al (2009) Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 83:817–829

    CAS  PubMed  Google Scholar 

  78. Widjojoatmodjo MN, van Gennip HG, Bouma A, van Rijn PA, Moormann RJ (2000) Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol 74:2973–2980

    CAS  PubMed  Google Scholar 

  79. Hulst MM, Moormann RJ (2001) Erns protein of pestiviruses. Methods Enzymol 342:431–440

    CAS  PubMed  Google Scholar 

  80. Hausmann Y, Roman-Sosa G, Thiel HJ, Rumenapf T (2004) Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity. J Virol 78:5507–5512

    CAS  PubMed  Google Scholar 

  81. Iqbal M, Poole E, Goodbourn S, McCauley JW (2004) Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J Virol 78:136–145

    CAS  PubMed  Google Scholar 

  82. Magkouras I, Matzener P, Rumenapf T, Peterhans E, Schweizer M (2008) RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses. J Gen Virol 89:2501–2506

    CAS  PubMed  Google Scholar 

  83. Hulst MM, Panoto FE, Hoekman A, van Gennip HG, Moormann RJ (1998) Inactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus. J Virol 72:151–157

    CAS  PubMed  Google Scholar 

  84. Meyer C, Von Freyburg M, Elbers K, Meyers G (2002) Recovery of virulent and RNase-negative attenuated type 2 bovine viral diarrhea viruses from infectious cDNA clones. J Virol 76:8494–8503

    CAS  PubMed  Google Scholar 

  85. Meyers G, Saalmüller A, Büttner M (1999) Mutations abrogating the RNase activity in glycoprotein e(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol 73:10224–10235

    CAS  PubMed  Google Scholar 

  86. von Freyburg M, Ege A, Saalmuller A, Meyers G (2004) Comparison of the effects of RNase-negative and wild-type classical swine fever virus on peripheral blood cells of infected pigs. J Gen Virol 85:1899–1908

    Google Scholar 

  87. Matzener P, Magkouras I, Rumenapf T, Peterhans E, Schweizer M (2009) The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res 140:15–23

    PubMed  Google Scholar 

  88. Weiland F, Weiland E, Unger G, Saalmuller A, Thiel HJ (1999) Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J Gen Virol 80(Pt 5):1157–1165

    CAS  PubMed  Google Scholar 

  89. Langedijk JP et al (2002) A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide. J Virol 76:10383–10392

    CAS  PubMed  Google Scholar 

  90. van Gennip HG, Hesselink AT, Moormann RJ, Hulst MM (2005) Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection. Arch Virol 150:2271–2286

    PubMed  Google Scholar 

  91. Tews BA, Schurmann EM, Meyers G (2009) Mutation of cysteine 171 of pestivirus E rns RNase prevents homodimer formation and leads to attenuation of classical swine fever virus. J Virol 83:4823–4834

    CAS  PubMed  Google Scholar 

  92. Charleston B, Fray MD, Baigent S, Carr BV, Morrison WI (2001) Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. J Gen Virol 82:1893–1897

    CAS  PubMed  Google Scholar 

  93. Meyers G et al (2007) Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81:3327–3338

    CAS  PubMed  Google Scholar 

  94. Tautz N et al (1999) Establishment and characterization of cytopathogenic and noncytopathogenic pestivirus replicons. J Virol 73:9422–9432

    CAS  PubMed  Google Scholar 

  95. Chon SK, Perez DR, Donis RO (1998) Genetic analysis of the internal ribosome entry segment of bovine viral diarrhea virus. Virology 251:370–382

    CAS  PubMed  Google Scholar 

  96. Myers TM et al (2001) Efficient translation initiation is required for replication of bovine viral diarrhea virus subgenomic replicons. J Virol 75:4226–4238

    CAS  PubMed  Google Scholar 

  97. Rijnbrand R et al (2001) The influence of downstream protein-coding sequence on internal ribosome entry on hepatitis C virus and other flavivirus RNAs. RNA 7:585–597

    CAS  PubMed  Google Scholar 

  98. Becher P, Orlich M, Thiel H-J (2000) Mutations in the 5′ nontranslated region of bovine viral diarrhea virus result in altered growth characteristics. J Virol 74:7884–7894

    CAS  PubMed  Google Scholar 

  99. Makoschey B et al (2004) Bovine viral diarrhea virus with deletions in the 5′-nontranslated region: reduction of replication in calves and induction of protective immunity. Vaccine 22:3285–3294

    CAS  PubMed  Google Scholar 

  100. Wang Y et al (2008) 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374:390–398

    CAS  PubMed  Google Scholar 

  101. Risatti GR et al (2005) Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology 343:116–127

    CAS  PubMed  Google Scholar 

  102. Sainz B Jr, Mossel EC, Peters CJ, Garry RF (2004) Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329:11–17

    CAS  PubMed  Google Scholar 

  103. Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV (2008) Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 370:122–129

    CAS  PubMed  Google Scholar 

  104. de Smit AJ et al (2000) Recombinant classical swine fever (CSF) viruses derived from the Chinese vaccine strain (C-strain) of CSF virus retain their avirulent and immunogenic characteristics. Vaccine 18:2351–2358

    PubMed  Google Scholar 

  105. van Gennip HG, van Rijn PA, Widjojoatmodjo MN, de Smit AJ, Moormann RJ (2000) Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 19:447–459

    PubMed  Google Scholar 

  106. Armengol E et al (2002) Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol 83:551–560

    PubMed  Google Scholar 

  107. Maurer R, Stettler P, Ruggli N, Hofmann MA, Tratschin JD (2005) Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23:3318–3328

    CAS  PubMed  Google Scholar 

  108. Frey CF et al (2006) Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet Res 37:655–670

    CAS  PubMed  Google Scholar 

  109. Reimann I, Semmler I, Beer M (2007) Packaged replicons of bovine viral diarrhea virus are capable of inducing a protective immune response. Virology 366:377–386

    CAS  PubMed  Google Scholar 

  110. van Gennip HG, Bouma A, van Rijn PA, Widjojoatmodjo MN, Moormann RJ (2002) Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV. Vaccine 20:1544–1556

    PubMed  Google Scholar 

  111. Dong XN, Chen YH (2007) Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25:205–230

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Meyers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Tautz, N., Meyers, G. (2011). Basic Science Paves the Way to Novel Safe and Effective Pestivirus Vaccines. In: Dormitzer, P., Mandl, C., Rappuoli, R. (eds) Replicating Vaccines. Birkhäuser Advances in Infectious Diseases. Springer, Basel. https://doi.org/10.1007/978-3-0346-0277-8_7

Download citation