Introduction to Plane Curve Singularities. Toric Resolution Tower and Puiseux Pairs

  • Mutsuo Oka
Conference paper
Part of the Progress in Mathematics book series (PM, volume 283)


We give an elementary introduction of the toric modification, using an irreducible plane curve germ. We explain also the relation between the tower of the toric modifications which gives a resolution of the curve and the Puiseux pairs.

2000 Mathematics Subject Classification



Resolution Puiseux characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. A’Campo. La fonction zeta d’une monodromie. Comm. Math. Helv. 50:539–580, 1975.MathSciNetGoogle Scholar
  2. [2]
    N. A’Campo and M. Oka. Geometry of plane curves via Tchirnhausen resolution tower. Osaka J. Math. 33:1003–1033, 1996.zbMATHMathSciNetGoogle Scholar
  3. [3]
    P. Griffiths and J. Harris. Principles of algebraic geometry Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.zbMATHGoogle Scholar
  4. [4]
    R. C. Gunning and H. Rossi. Analytic functions of several complex variables. Prentice-Hall Inc., Englewood Cliffs, N.J., 1965.zbMATHGoogle Scholar
  5. [5]
    A. G. Kouchnirenko. Polyédres de Newton et nombres de Milnor. Invent. Math., 32:1–31, 1976.CrossRefMathSciNetGoogle Scholar
  6. [6]
    S. Lang. Algebra. Addison-Wesley, Reading, Mass., second edition, 1984.zbMATHGoogle Scholar
  7. [7]
    J. Milnor. Lectures on the h-cobordism theorem. Notes by L. Siebenmann and J. Sondow. Princeton University Press, Princeton, N.J., 1965.zbMATHGoogle Scholar
  8. [8]
    J. Milnor. Singular Points of Complex Hypersurface, volume 61 of Annals Math. Studies. Princeton Univ. Press, 1968.Google Scholar
  9. [9]
    M. Oka. On the resolution of the hypersurface singularities. In Complex analytic singularities, volume 8 of Adv. Stud. Pure Math., pages 405–436. North-Holland, Amsterdam, 1987.Google Scholar
  10. [10]
    M. Oka. Geometry of plane curves via toroidal resolution. In Algebraic geometry and singularities (La Rábida, 1991), pages 95–121. Birkhäuser, Basel, 1996.Google Scholar
  11. [11]
    M. Oka. Non-degenerate complete intersection singularity. Hermann, Paris, 1997.zbMATHGoogle Scholar
  12. [12]
    L. D. Tráng and M. Oka. On resolution complexity of plane curves. Kodai Math. J., 18(1):1–36, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. N. Varchenko. Zeta-function of monodromy and Newton’s diagram. Invent. Math., 37(3):253–262, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    C. T. C. Wall. Singular points of plane curves, volume 63 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2004.Google Scholar
  15. [15]
    J. A. Wolf. Differentiable fibre spaces and mappings compatible with Riemannian metrics. Michigan Math. J., 11:65–70, 1964.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Mutsuo Oka
    • 1
  1. 1.Tokyo University of ScienceTokyoJapan

Personalised recommendations