Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 280))

Abstract

In this paper we prove the Γ00 conjecture of van Geemen and van der Geer [8] under the additional assumption that the matrix of coefficients of the tangent has rank at most 2 (see Theorem 1 for a precise formulation). This assumption is satisfied by Jacobians (see proposition 1), and thus our result gives a characterization of the locus of Jacobians among all principally polarized abelian varieties.

The proof is by reduction to the (stronger version of the) characterization of Jacobians by semidegenerate trisecants, i.e., by the existence of lines tangent to the Kummer variety at one point and intersecting it in another, proven by Krichever in [16] in his proof of Welters’ [20] trisecant conjecture.

Research is supported in part by National Science Foundation under the grant DMS-05-55867

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreotti, A.; Mayer, A. L.: On period relations for abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 189–238.

    MATH  MathSciNet  Google Scholar 

  2. Beauville, A., Debarre, O., Donagi, R., van der Geer, G. Sur les fonctions thêta d’ordre deux et les singularités du diviseur thêta. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 481–484.

    MATH  Google Scholar 

  3. Debarre, O.: Seshadri constants of abelian varieties. The Fano Conference, 379–394, Univ. Torino, Turin, 2004.

    Google Scholar 

  4. Donagi, R.: The Schottky problem, Theory of Moduli, Lecture Notes in Mathematics 1337, Springer-Verlag 1988, 84–137.

    Google Scholar 

  5. Dubrovin, B.: The Kadomcev-Petviashvili Equation and the relations between the periods of holomorphic differentials on Riemann surfaces, Math. USSR Izvestija 19 (1982), 285–296.

    Article  MATH  Google Scholar 

  6. Fay, J.: Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin-New York, 1973.

    MATH  Google Scholar 

  7. Fay, J.: On the even-order vanishing of Jacobian theta functions. Duke Math. J. 51 (1984), 109–132

    Article  MATH  MathSciNet  Google Scholar 

  8. van Geemen, B., van der Geer, G.: Kummer varieties and the moduli spaces of abelian varieties, Amer. J. of Math. 108 (1986), 615–642.

    Article  MATH  Google Scholar 

  9. Grushevsky, S., Krichever, I. Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants, preprint arXiv:0705.2829

    Google Scholar 

  10. Gunning, R.C.: Some curves in abelian varieties. Invent. Math. 66 (1982), 377–389.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gunning, R.C.: Some identities for abelian integrals. Amer. J. of Math. 108 (1986), 39–74.

    Article  MATH  MathSciNet  Google Scholar 

  12. Izadi, E.: Fonctions thêta du second ordre sur la Jacobienne d’une courbe lisse. Math. Ann. 289 (1991), 189–202.

    Article  MATH  MathSciNet  Google Scholar 

  13. Izadi, E. The geometric structure of A 4, the structure of the Prym map, double solids and Γ00-divisors. J. Reine Angew. Math. 462 (1995), 93–158

    MATH  MathSciNet  Google Scholar 

  14. Izadi, E.: Second order theta divisors on Pryms. Bull. Soc. Math. France 127 (1999), 1–23.

    MATH  MathSciNet  Google Scholar 

  15. Krichever, I.: Integrable linear equations and the Riemann-Schottky problem. in Algebraic geometry and number theory, 497–514, Progr. Math., 253, Birkhäuser, Boston, MA, 2006.

    Google Scholar 

  16. Krichever, I.: Characterizing Jacobians via trisecants of the Kummer Variety. Ann. Math., to appear; math.AG/0605625.

    Google Scholar 

  17. Matsusaka, T.: On a characterization of a Jacobian variety. Mem. Coll. Sc. Kyoto, Ser. A 23 (1959), 1–19.

    MathSciNet  Google Scholar 

  18. Ran, Z.: On subvarieties of abelian varieties. Invent. Math. 62 (1981), 459–479.

    Article  MathSciNet  Google Scholar 

  19. Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (1986), 333–382.

    Article  MATH  MathSciNet  Google Scholar 

  20. Welters, G.: A criterion for Jacobi varieties. Ann. Math. 120 (1984), 497–504.

    Article  MathSciNet  Google Scholar 

  21. Welters, G.: The surface C — C on Jacobi varieties and second order theta functions. Acta Math. 157 (1986), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Grushevsky, S. (2010). A Special Case of the Γ00 Conjecture. In: Alonso, M.E., Arrondo, E., Mallavibarrena, R., Sols, I. (eds) Liaison, Schottky Problem and Invariant Theory. Progress in Mathematics, vol 280. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0201-3_12

Download citation

Publish with us

Policies and ethics