Abelian Solutions of the Soliton Equations and Geometry of Abelian Varieties

  • I. Krichever
  • T. Shiota
Part of the Progress in Mathematics book series (PM, volume 280)


We introduce the notion of abelian solutions of the 2D Toda lattice equations and the bilinear discrete Hirota equation, and show that all of them are algebro-geometric.

Mathematics Subject Classification (2000)

Primary 37K10 Secondary 14H70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Airault, H. McKean, J. Moser, Rational and elliptic solutions of the Kortewegde Vries equation and related many-body problem. Commun. Pure Appl. Math. 30 (1977), no.1, 95–148.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Arbarello, C. De Concini, On a set of equations characterizing Riemann matrices. Ann. of Math. (2) 120 (1984), no.1, 119–140.CrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Arbarello, C. De Concini, Another proof of a conjecture of S.P. Novikov on periods of abelian integrals on Riemann surfaces. Duke Math. Journal, 54 (1987), 163–178.zbMATHCrossRefGoogle Scholar
  4. [4]
    O. Babelon, E. Billey, I. Krichever, M. Talon, Spin generalisation of the Calogero-Moser system and the matrix KP equation. In “Topics in Topology and Mathematical Physics”, Amer. Math. Soc. Transl. Ser. 2 170, Amer. Math. Soc., Providence, 1995, 83–119.Google Scholar
  5. [5]
    D. Ben-Zvi, T. Nevins, Flows of Calogero-Moser Systems. Int. Math. Res. Not. Vol. 2007, Art. ID rnm105, 38 pp.Google Scholar
  6. [6]
    J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators I. Proc. London Math Soc. 21 (1922), 420–440.CrossRefGoogle Scholar
  7. [7]
    J.L. Burchnall, T.W. Chaundy, Commutative ordinary differential operators II. Proc. Royal Soc. London 118 (1928), 557–583.CrossRefGoogle Scholar
  8. [8]
    J.D. Fay, Theta functions on Riemann surfaces. Lecture Notes in Mathematics, Vol. 352. Springer-Verlag, Berlin-New York, 1973.zbMATHGoogle Scholar
  9. [9]
    R. Gunning, Some curves in abelian varieties. Invent. Math. 66 (1982), no.3, 377–389.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Gorsky, N. Nekrasov, Hamiltonian systems of Calogero-type, and two-dimensional Yang-Mills theory. Nuclear Phys. B 414 (1994), no.1–2, 213–238.zbMATHMathSciNetGoogle Scholar
  11. [11]
    I.M. Krichever, Integration of non-linear equations by methods of algebraic geometry. Funct. Anal. Appl. 11 (1977), no.1, 12–26.zbMATHCrossRefGoogle Scholar
  12. [12]
    I.M. Krichever, Methods of algebraic geometry in the theory of non-linear equations. Russian Math. Surveys, 32 (1977), no.6, 185–213.zbMATHCrossRefGoogle Scholar
  13. [13]
    I. Krichever, Algebraic curves and non-linear difference equation. Uspekhi Mat. Nauk 33 (1978), no.4, 215–216.zbMATHMathSciNetGoogle Scholar
  14. [14]
    I. Krichever, Elliptic solutions of Kadomtsev-Petviashvili equations and integrable systems of particles. (In Russian), Funct. Anal. Appl. 14 (1980), no.1, 45–54. Transl. 282–290.zbMATHMathSciNetGoogle Scholar
  15. [15]
    I. Krichever, The periodic nonabelian Toda lattice and two-dimensional generalization. appendix to: B. Dubrovin, Theta-functions and nonlinear equations. Uspekhi Mat. Nauk 36 (1981), no.2, 72–77.MathSciNetGoogle Scholar
  16. [16]
    I. Krichever, Two-dimensional periodic difference operators and algebraic geometry. Doklady Akad. Nauk USSR 285 (1985), no.1, 31–36.MathSciNetGoogle Scholar
  17. [17]
    I. Krichever, Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations. Calogero-Moser-Sutherland models (Montreal, QC, 1997), 249–271, CRM Ser. Math. Phys., Springer, New York, 2000.Google Scholar
  18. [18]
    I. Krichever, Elliptic analog of the Toda lattice. Int. Math. Res. Not. (2000), no.8, 383–412.Google Scholar
  19. [19]
    I. Krichever, Vector bundles and Lax equations on algebraic curves. Comm. Math. Phys. 229 (2002), no.2, 229–269.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    I. Krichever, Integrable linear equations and the Riemann-Schottky problem. Algebraic geometry and number theory, 497–514, Progr. Math. 253, Birkhäuser Boston, Boston, MA, 2006.Google Scholar
  21. [21]
    I. Krichever, Characterizing Jacobians via trisecants of the Kummer Variety. math.AG /0605625.Google Scholar
  22. [22]
    I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin. Quantum integrable models and discrete classical Hirota equations. Comm. Math. Phys.188 (1997), no.2, 267–304.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    I. Krichever, T. Shiota, Abelian solutions of the KP equation. Amer. Math. Soc. Transl. (2) 224 (2008), 173–191.MathSciNetGoogle Scholar
  24. [24]
    I. Krichever, A. Zabrodin, Spin generalisation of the Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra. (In Russian), Uspekhi Mat. Nauk, 50 (1995), no.6, 3–56.MathSciNetGoogle Scholar
  25. [25]
    T. Shiota, Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (1986), 333–382.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    D. Mumford, An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations. in: Proceedings Int. Symp. Algebraic Geometry, Kyoto, 1977, Kinokuniya Book Store, Tokyo, 1978, pp. 115–153.Google Scholar
  27. [27]
    S.N.M. Ruijsenaars, H. Schneider, A new class of integrable systems and its relation to solitons. Ann. Physics 170 (1986), 370–405.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    J.-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955), 197–278.CrossRefMathSciNetGoogle Scholar
  29. [29]
    G.E. Welters, On flexes of the Kummer variety (note on a theorem of R.C. Gunning). Nederl. Akad. Wetensch. Indag. Math. 45 (1983), no.4, 501–520.zbMATHMathSciNetGoogle Scholar
  30. [30]
    G.E. Welters, A criterion for Jacobi varieties. Ann. of Math. 120 (1984), no.3, 497–504.CrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2010

Authors and Affiliations

  • I. Krichever
    • 1
    • 2
  • T. Shiota
    • 3
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Kyoto UniversityKyotoJapan

Personalised recommendations