Global Regularity and Stability in S-Spaces for Classes of Degenerate Shubin Operators

  • Todor Gramchev
  • Stevan Pilipović
  • Luigi Rodino
Part of the Operator Theory: Advances and Applications book series (OT, volume 205)


We study the uniform regularity and the decay at infinity for anisotropic tensor products of Shubin-type differenential operators as well as for degenerate harmonic oscillators. As applications of our general results we obtain new theorems for global hypoellipticity for classes of degenerate operators in inductive and projective Gelfand-Shilov spaces.


S-spaces Shubin-type pseudo-differential operators Gelfand-Shilov spaces 

Methematics Subject Classification (2000)

Primary 47F30 Secondary 46F05 35B65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Avantaggiati, S-spaces by means of the behaviour of Hermite-Fourier coefficients, Boll. Un. Mat. Ital. 6(4-A) (1985), 487–495.MathSciNetGoogle Scholar
  2. [2]
    M. Cappiello, T. Gramchev and L. Rodino, Exponential decay and regularity for SG-elliptic operators with polynomial coefficients, J. Funct. Anal. 237 (2006), 634–654.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Dasgupta and M. W. Wong, Essential self-adjointness and global hypoellipticity of the twisted Laplacian, Rend. Sem. Mat. Univ. Pol. Torino 66 (2008), 75–85.zbMATHMathSciNetGoogle Scholar
  4. [4]
    I. M. Gelfand and G. E. Shilov, Generalized Functions II, Academic Press, 1968.Google Scholar
  5. [5]
    T. Gramchev, S. Pilipović and L. Rodino, Classes of degenerate elliptic operators in Gelfand-Shilov spaces, in New Developments in Pseudo-Differential Operators, Operator Theory: Advances and Applications 189 Birkhäuser, 2009, 15–31.Google Scholar
  6. [6]
    H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic Partial Differential Equations. A Modeling, White Noise Functional Approach, Probability and its Applications, Birkhäuser, 1996.Google Scholar
  7. [7]
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer, Part III, 1985; Part IV, 1985.Google Scholar
  8. [8]
    M. Langenburch, Hermite functions and weighted spaces of generalized functions, Manuscripta Math. 119 (2006), 269–285.CrossRefMathSciNetGoogle Scholar
  9. [9]
    B. S. Mitjagin, Nuclearity and other properties of spaces of type S, in American Mathematical Society Translations Ser. 2 93, 1970, 45–59.Google Scholar
  10. [10]
    Z. Lozanov Crvenković, D. Perisić and M. Tasković, Gelfand-Shilov spaces, structural and kernel theorems, preprint.Google Scholar
  11. [11]
    S. Pilipović, Generalization of Zemanian spaces of generalized functions which have orthonormal series expansions, SIAM J. Math. Anal. 17 (1986), 477–484.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Pilipović, Tempered ultradistributions, Boll. Un. Mat. Ital., VII. Ser., B 2(2) (1988), 235–251.zbMATHGoogle Scholar
  13. [13]
    M. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, 1987.Google Scholar
  14. [14]
    M. W. Wong, Weyl transforms, the heat kernel and Green function of a degenerate elliptic operator, Ann. Global Anal. Geom. 28 (2005), 271–283.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. W. Wong, Weyltransforms and a degenerate elliptic partial differential equation, Proc. R. Soc. Lond. Ser. A. 461 (2005), 3863–3870.zbMATHCrossRefGoogle Scholar
  16. [16]
    M. W. Wong, The heat equation for the Hermite operator on the Heisenberg group, Hokkaido Math. J. 34 (2005), 393–404.zbMATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Todor Gramchev
    • 1
  • Stevan Pilipović
    • 2
  • Luigi Rodino
    • 3
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly
  2. 2.Institute of MathematicsUniversity of Novi SadTrg D. Obradovića 4Novi SadSerbia
  3. 3.Dipartimento di MatematicaUniversità di TorinoTorinoItaly

Personalised recommendations