The Stable Rank of a Nest Algebra and Strong Stabilization of Linear Time-varying Systems

  • Avraham Feintuch
Part of the Operator Theory: Advances and Applications book series (OT, volume 197)


It is shown that the stable rank of a continuous time nest algebra is infinite. From this it follows that there exist stabilizable continuous time systems which are not strongly stabilizable.


Time-varying linear systems coprime factorizations stabilization causality continuous nests stable rank 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bass, Algebraic K-Theory, Benjamin, New York, 1967.zbMATHGoogle Scholar
  2. [2]
    G. Corach, A.R. Larotonda, Stable range in Banach algebras, Journal of Pure and Applied Algebra, 32 (1984), 289–300.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    K.R. Davidson, J.L. Orr, The invertibles are connected in infinite multiplicity nest algebras, Bull. London Math. Soc., 27, (1995), 155–161.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    K.R. Davidson, Nest Algebras, Pitman Res. Notes Math. Ser. 191, Longman Scientific and Technical, London, 1988.zbMATHGoogle Scholar
  5. [5]
    A. Feintuch, R. Saeks System Theory, A Hilbert Space Approach, Academic Press, Series in Pure and Applied Mathematics 102, New York, London, 1982.zbMATHGoogle Scholar
  6. [6]
    A. Feintuch, Robust Control theory in Hilbert Space, Applied Mathematical Sciences 130, Springer, 1998.Google Scholar
  7. [7]
    A. Feintuch, On strong stabilization for linear time-varying systems, System and Control Letters, 54, (2005), 1091–1095.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    M. Livsic, On a class of linear operators in a Hilbert space, Mat. Sb, 19 (61), (1946), 239–262. A.M.S. Transl. (2) 5, (1957), 67–114.Google Scholar
  9. [9]
    J.L. Orr, Triangular Algebras and Ideals of Nest Algebras, Memoirs of the A.M.S., 117, 562, 1995.Google Scholar
  10. [10]
    A. Quadrat, On a General Structure of the Stabilizing Controllers Based on a Stable Range, SIAM J. Cont. and Optim., 24, 6, (2004) 2264–2285.CrossRefMathSciNetGoogle Scholar
  11. [11]
    J.R. Ringrose, On some algebras of operators, Proc. London Math. Soc., 15, 3 (1965), 61–83.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Sasane, Stable ranks of Banach algebras of operator valued analytic functions, Complex Analysis and Operator Theory, to appear (issue 3–1, 2009).Google Scholar
  13. [13]
    S. Treil, The Stable Rank of the Algebra H Equals 1, J. Funct. Anal., 109 (1992), 130–154.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    L.N. Vasershtein, Stable ranks of rings and dimensionality of topological spaces, Func. Anal. Applic. 5 1972, 102–110.CrossRefGoogle Scholar
  15. [15]
    M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, Cambridge Mass., 1985.zbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Avraham Feintuch
    • 1
  1. 1.Department of MathematicsBen Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations