Advertisement

β-spread of Sets in Metric Spaces and Critical Values of Smooth Functions

  • Yosef Yomdin
Chapter
  • 496 Downloads
Part of the Operator Theory: Advances and Applications book series (OT, volume 197)

Abstract

This paper provides new geometric restrictions on the set of critical values of differentiable functions. The classical and widely used condition on critical values of differentiable mappings is given by the Morse-Sard theorem ([20, 38, 39]): if the mapping is C k -smooth, with k sufficiently big, then the set of its critical values has the Lebesgue measure (or, more precisely, the Hausdorff measure of an appropriate dimension) zero.

In a work of the author since 1981 ([43]–[46], [50], and others) which was strongly inspired by questions, remarks, and constructive criticism of Moshe Livsic, it was shown that in fact the critical values of any differentiable mapping satisfy geometric restrictions much stronger than just the property to be of measure zero. These restrictions are given in terms of the metric entropy and they turn out to be pretty close to a complete characterization of the possible sets of critical values. Still a gap between the necessary and sufficient conditions remained.

In the present paper we close (partially) this gap, introducing into consideration of critical values a certain geometric invariant (we call it β-spread) which was previously studied in quite different relations. We show that in many important cases β-spread provides a complete characterization of critical values of differentiable functions.

Mathematics Subject Classification (2000)

58K05 57R45 31B15 

Keywords

Critical values Sard theorem metric entropy spanning trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.I. Bakhtin, Properties of the entropy and the Hausdorff dimensions, Vestnik Mosk. Gos. Univ., Ser. 1, no. 5, 1982, 25–29.Google Scholar
  2. [2]
    S. Bates, On the image size of singular maps. I. Proc. Amer.Math. Soc. 114 (1992), no. 3, 699–705.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    S. Bates, On the image size of singular maps. II. Duke Math. J. 68 (1992), no. 3, 463–476.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Bates, Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Amer. Math. Soc. 117 (1993), no. 1, 279–283.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    S. Bates, C. Moreira, De nouvelles perspectives sur le théorème de Morse-Sard. (French) [Some new perspectives on the Morse-Sard theorem] C.R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 13–17.zbMATHMathSciNetGoogle Scholar
  6. [6]
    S. Bates, A. Norton, On sets of critical values in the real line. Duke Math. J. 83 (1996), no. 2, 399–413.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. Beck, J. Spencer, Unit distances, J. Combin. Theory Ser. A 37 (1984), no. 3, 231-238.Google Scholar
  8. [8]
    J. Beck, Uniformity and irregularity, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), 1400–1407, Amer. Math. Soc., Providence, RI, 1987.Google Scholar
  9. [9]
    J. Beck, Irregularities of distribution. I, Acta Math. 159 (1987), no. 1-2, 1–49.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Beck, Irregularities of distribution. II, Proc. London Math. Soc. (3) 56 (1988), no. 1, 1–50.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Beck, W. Chen, Irregularities of point distribution relative to half-planes I, Mathematika 40 (1993), no. 1, 102–126.zbMATHMathSciNetGoogle Scholar
  12. [12]
    J. Beck, W. Chen, Irregularities of point distribution relative to convex polygons II, Mathematika 40 (1993), no. 1, 127–136.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Beck, W. Chen, Irregularities of point distribution relative to convex polygons III, J. London Math. Soc. (2) 56 (1997), no. 2, 222–230.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A.S. Besicovitch, SA. J. Taylor, on the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449–459.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Bouligand, Ensembles impropres et nombre dimensionnel, Bull. Sci. Math. (2) 52 (1928), 320–344 and 361–376.Google Scholar
  16. [16]
    L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Math. Studies, 13, 1967.Google Scholar
  17. [17]
    K. Falconer, Techniques in fractal geometry, John Wiley and Sons, Ltd., Chichester, 1997. xviii+256 pp.zbMATHGoogle Scholar
  18. [18]
    K. Falconer, Fractal geometry. Mathematical foundations and applications, Second edition. John Wiley and Sons, Inc., Hoboken, NJ, 2003. xxviii+337 pp.zbMATHGoogle Scholar
  19. [19]
    K. Falconer, M. Jarvenpaa, Packing dimensions of sections of sets, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 1, 89–104.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Federer, Geometric Measure Theory, Die Grundlehren der Math.Wissenschafften, Vol. 153, Springer-Verlag, 1969.Google Scholar
  21. [21]
    L.T. Fejes-Toth, Über einen geometrischen Satz, Mathematische Zeitschrift 46 (1940), 83–85.CrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Goodman, R. Pollack, B. Sturmfels, The intrinsic spread of a configuration in R d. J. Amer. Math. Soc. 3 (1990), no. 3, 639–651.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Harrison, A. Norton, Geometric integration on fractal curves in the plane. Indiana Univ. Math. J. 40 (1991), no. 2, 567–594.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J. Harrison, A. Norton, The Gauss-Green theorem for fractal boundaries. Duke Math. J. 67 (1992), no. 3, 575–588.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberfl ächenbegriffs, in: Gesammelte Abhandlungen von Hermann Minkowski (part II, Chapter XXV), Chelsea, New York, 1967, 131–229.Google Scholar
  26. [26]
    L.D. Ivanov, Variazii mnozestv i funkzii, Moscow, Nauka 1975.Google Scholar
  27. [27]
    A.N. Kolmogorov, Asymptotic characteristics of some completely bounded metric spaces, Dokl. Akad. Nauk USSR 108, 1956, 585–589.Google Scholar
  28. [28]
    A.N. Kolmogorov, V.M. Tihomirov, ∈-entropy and ∈-capacity of sets in functional spaces, Uspehi Mat. Nauk 2 (86), 14, 1959, 3–86. English transl., Amer. Math. Soc. Transl. (2) 17, 1961, 277–364.MathSciNetGoogle Scholar
  29. [29]
    G. Kozma, Z. Lotker, G. Stupp, The minimal spanning tree and the upper box dimension, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1183–1187.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    M. Lapidus, M. van Frankenhuysen, Fractal Geometry and Number Theory, Birkh äuser, 2000.Google Scholar
  31. [31]
    G.G. Lorentz, Metric entropy and approximation, Bull. Amer. Math. Soc. 72, 1966, 903–937.zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    S.C. Milne, Peano curves and smoothness of functions, Adv. in Math. 35, no.2, 1980, 129–157.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    A. Norton, A critical set with nonnull image has large Hausdorff dimension, Trans. Amer. Math. Soc. 296 (1986), no. 1, 367–376.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    A. Norton, A C 1×∞ function with an interval of critical values Indiana Univ. Math. J. 40 (1991), no. 4, 1483–1488.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Norton, The Zygmund Morse-Sard theorem, J. Geom. Anal. 4 (1994), no. 3, 403–424.zbMATHMathSciNetGoogle Scholar
  36. [36]
    A. Norton, C. Pugh, Critical sets in the plane, Michigan Math. J. 38 (1991), no. 3, 441–459.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    R. Rumely, Capacity Theory on Algebraic Curves, Lecture Notes in Mathematics, 1378, Springer-Verlag, 1989. i+437 pp.MathSciNetGoogle Scholar
  38. [38]
    A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48, 1942, 883–890.zbMATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    A. Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. of Math., 87, 1965, 158–174.CrossRefMathSciNetGoogle Scholar
  40. [40]
    C. Tricot, Formule intégrale pour la dimension fractale dans le plan. (French) [Integral formulation for the fractal dimension in the plane] C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 169–172.zbMATHMathSciNetGoogle Scholar
  41. [41]
    C. Tricot, Curves and fractal dimension. With a foreword by Michel Mendes France. Translated from the 1993 French original. Springer-Verlag, New York, 1995. xiv+323 pp.Google Scholar
  42. [42]
    A.G. Vitushkin, On representation of functions by means of superpositions and related topics, L’Enseignement Math. XXIII, 1977, 255–320.MathSciNetGoogle Scholar
  43. [43]
    Y. Yomdin, The geometry of critical and near-critical values of differentiable mappings. Math. Ann. 264, (1983), n. 4. 495–515.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Y. Yomdin, β-spread of sets in metric spaces and critical values of smooth functions, Preprint, MPI Bonn, (1983).Google Scholar
  45. [45]
    Y. Yomdin, Global bounds for the Betti numbers of regular fibers of differentiable mappings. Topology 24, (1985), n. 2, 145–152.zbMATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    Y. Yomdin, Sard’s theorem and its improved versions in numerical analysis. Proc. A.M.S. Conf., Colorado, 1988. Lectures in Applied Math. 29, (1990), 701–706.MathSciNetGoogle Scholar
  47. [47]
    Y. Yomdin, β-spread of sets in metric spaces and capacity, in preparation.Google Scholar
  48. [48]
    Y. Yomdin, Discrete subsets of semialgebraic sets, in preparation.Google Scholar
  49. [49]
    Y. Yomdin, Remez-type inequalities for polynomials bounded on discrete sets, submitted.Google Scholar
  50. [50]
    Y. Yomdin, G. Comte, Tame Geometry with Applications in Smooth Analysis, Lecture Notes in Mathematics, 1834, Springer, Berlin, Heidelberg, New York, 2004.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • Yosef Yomdin
    • 1
  1. 1.Department of MathematicsThe Weizmann InstituteRehovotIsrael

Personalised recommendations