Advertisement

The Energetics of Cataclasis Based on Breakage Mechanics

  • Giang D. Nguyen
  • Itai Einav
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

We develop a constitutive model for rocks that are constituted from brittle particles, based on the theory of breakage mechanics. The model connects between the energetics and the micromechanics that drive the process of confined comminution. Given this ability, our model not only describes the entire stress-strain response of the material, but also connects this response to predicting the evolution of the grain size distribution. The latter fact enables us to quantify how the permeability reduces within cataclasite zones, in relation to aspects of grain crushing. Finally, our paper focuses on setting a framework for quantifying how the energy budget of earthquakes is expensed in relation to dissipation events in cataclasis. We specifically distinguish between the dissipation directly from the creation of new surface area, which causes further breakage dissipation from the redistribution of locked-in stored energy from surrounding particles, dissipations from friction and from the configurational reorganisation of particles.

Key words

Cataclasis fault gouge breakage permeability energy balance fracture energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An, L.-J. and Sammis, C.G. (1994), Particle size distribution of cataclastic fault materials from Southern California: A 3-D study, Pure Appl. Geophys. 143(1), 203–227.CrossRefGoogle Scholar
  2. Aydin, A., Borja, R.I., and Eichhubl, P. (2006), Geological and mathematical framework for failure modes in granular rock, J. Struct. Geol. 28(1), 83–98.CrossRefGoogle Scholar
  3. Beeler, N.M., Tullis, T.E., Blanpied, M.L., and Weeks, J.D. (1996), Frictional behavior of large displacement experimental faults, J. Geophys. Res. 101(B4), 8697–8715.CrossRefGoogle Scholar
  4. Ben-Zion, Y. (2008), Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes and different dynamic regimes, Rev. Geophys. 46, RG4006, doi: 10.1029/2008RG000260.Google Scholar
  5. Ben-Zion, Y. and Sammis, C.G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160(3), 677–715.CrossRefGoogle Scholar
  6. Boria, R.I., Tamagnini, C. and Amorosi, A. (1997), Coupling plasticity and energy-conserving elasticity models for clays, J. Geotech. Geoenviron. Engin. 123(10), 948–957.CrossRefGoogle Scholar
  7. Brunauer, S., Emmett, P.H., and Teller, E. (1938), Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60(2), 309–319.CrossRefGoogle Scholar
  8. Caine, J.S., Evans, J.P. and Forster, C.B. (1996), Fault zone architecture and permeability structure, Geology 24(11), 1025–1028.CrossRefGoogle Scholar
  9. Chester, J.S., Chester, F.M., and Kronenberg, A.K. (2005), Fracture surface energy of the Punchbowl fault, San Andreas system, Nature 437(7055), 133–136.CrossRefGoogle Scholar
  10. Cundall, P. and Strack, O. (1979), A discrete numerical model for granular assemblies, Geotechnique 29, 47–65.CrossRefGoogle Scholar
  11. Cuss, R.J., Rutter, E.H. and Holloway, R.F. (2003), The application of critical state soil mechanics to the mechanical behaviour of porous sandstones, Internat. J. Rock Mech. and Mining Sci. 40, 847–862.CrossRefGoogle Scholar
  12. Edwards, S.F. and Grinev, D.V. (2001), Transmission of stress in granular materials as a problem of statistical mechanics, Physica A 302, 162–186CrossRefGoogle Scholar
  13. Einav, I. (2007a), Breakage mechanics—Part I: Theory, J. Mechan. Phys. Sol. 55(6), 1274–1297.CrossRefGoogle Scholar
  14. Einav, I. (2007b), Breakage mechanics—Part II: Modelling granular materials, J. Mech. Phys. Sol. 55(6), 1298–1320CrossRefGoogle Scholar
  15. Einav, I. (2007c), Fracture propagation in brittle granular matter, Proc. Roy. Soc. A: Math., Phys. Eng. Sci. 463(2087), 3021–3035.CrossRefGoogle Scholar
  16. Einav, I. (2007d), Soil mechanics: breaking ground, Philosoph. Transac. Roy. Soc. A: Math., Phys. Engin. Sci. 365(1861), 2985–3002.CrossRefGoogle Scholar
  17. Einav, I., Vardoulakis, I., and Chan, A.H.C. (2008), Confined comminution and permeability reduction in expanding perforations, to be submitted.Google Scholar
  18. Einav, I. and Puzrin, A.M. (2004), Pressure-dependent elasticity and energy conservation in elastoplastic models for soils, J. Geotechn. Geoenviron. Engin. 130(1), 81–92.CrossRefGoogle Scholar
  19. Evans, J.P., Forster, C.B., and Goddard, J.V. (1997), Permeability of fault-related rocks, and implications for hydraulic structure of fault zones, J. Struct. Geol. 19(11), 1393–1404.CrossRefGoogle Scholar
  20. Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Philosoph. Transact. Roy. Soc. London. Series A, Containing Papers of a Math. or Phys. Character (1896–1934) 221(1), 163–198.CrossRefGoogle Scholar
  21. Guo, Y. and Morgan, J.K. (2007), Fault gouge evolution and its dependence on normal stress and rock strength—Results of discrete element simulations: Gouge zone properties, J. Geophys. Res. 112(B10403), 1–17.Google Scholar
  22. Hamiel, Y., Lyakhovsky, V., and Agnon, A. (2004), Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks, Geophys. J. Internatl. 156, 701–713CrossRefGoogle Scholar
  23. Heilbronner, R. and Keulen, N. (2006), Grain size and grain shape analysis of fault rocks, Tectonophysics 427(1–4), 199–216.CrossRefGoogle Scholar
  24. Hoque, E. and Tatsuoka, F. (1998), Anisotropy in elastic deformation of granular materials, Soils Found. 38(1), 163–179.Google Scholar
  25. Houlsby, G.T. (1985), The use of a variable shear modulus in elastic-plastic models for clays, Comp. Geotechn. 1(1), 3–13.CrossRefGoogle Scholar
  26. Houlsby, G.T., Amorosi, A., and Rojas, E. (2005), Elastic moduli of soils dependent on pressure: A hyperelastic formulation, Geotechnique 55(5), 383–392.Google Scholar
  27. Kendall, K. (1978), The impossibility of comminuting small particles by compression, Nature 272, 710–711.CrossRefGoogle Scholar
  28. LoPkesti, D.C.F. and O’Neill, D.A. (1991), Laboratory investigation of small strain modulus anisotropy in sands, Proc. ISOCCTI, Clarkson University, Potsdam, 1991, pp. 213–224.Google Scholar
  29. Lund, M.G. and Austrheim, H. (2003), High-pressure metamorphism and deep-crustal seismicity: Evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas, Tectonophysics 372(1–2), 59–83.CrossRefGoogle Scholar
  30. Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1977), Distributed damage, faulting, and friction, J. Geophys. Res. 102(B12), 27,635–27,649.CrossRefGoogle Scholar
  31. Mandl, G., de Jong, L.N.J., and Maltha, A. (1977), Shear zones in granular material, Rock Mech. Rock Engin. 9(2), 95–144.CrossRefGoogle Scholar
  32. Marone, C., Raleigh, C.B., and Scholz, C.H. (1990), Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res. 95(B5), 7007–7025.CrossRefGoogle Scholar
  33. Marone, C., Vidale, J.E., and Ellsworth, W.L. (1995), Fault healing inferred from time-dependent variations in source properties of repeating earthquakes, Geophys. Res. Lett. 22(22), 3095–3098.CrossRefGoogle Scholar
  34. Matyka, M., Khalili, A., and Koza, Z. (2008), Tortuosity-porosity relation in porous media flow, Phys. Rev. E 78, 026306.CrossRefGoogle Scholar
  35. McGarr, A., Fletcher, J.B., and Beeler, N.M. (2004), Attempting to bridge the gap between laboratory and seismic estimates of fracture energy, Geophys. Res. Lett. 31, L14606.CrossRefGoogle Scholar
  36. Morrow, C., Shi, L. Q., and Byerlee, J. (1981), Permeability and strength of San Andreas fault gouge under high pressure, Geophys. Res. Lett. 8(4), 325–328.CrossRefGoogle Scholar
  37. Muthuswamy, M. and Tordesillas, A. (2006), How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies?, J. Stat. Mech.-Theory and Experiment, P09003.Google Scholar
  38. Okada, Y., Sassa, K., and Fukuoka, H. (2004), Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests, Engin. Geol. 75(3–4), 325–343.CrossRefGoogle Scholar
  39. Olgaard, D.L. and Brace, W.F. (1983), The microstructure of gouge from a mining-induced seismic shear zone, Internatl. J. Rock Mechan. and Mining Sci. Geomechan. Abstracts 20(1), 11–19.CrossRefGoogle Scholar
  40. Olsen, M.P., Scholz, C.H. and Léger, A. (1998), Healing and sealing of a simulated fault gouge under hydrothermal conditions: Implications for fault healing, J. Geophys. Res. 103(B4), 7421–7430.CrossRefGoogle Scholar
  41. Olsson, W.A. (1999), Theoretical and experimental investigation of compaction bands in porous rock, J. Geophys. Res. 104(B4), 7219–7228.CrossRefGoogle Scholar
  42. Pittarello, L., Di Toro, G., Bizzarri, A., Pennacchioni, G., Hadizadeh, J. and Cocco, M. (2008), Energy partitioning during seismic slip in pseudotachylyte-bearing faults (Gole Larghe Fault, Adamello, Italy), Earth Planet. Sci. Lett. 269(1–2), 131–139.CrossRefGoogle Scholar
  43. Reches, Z. and Dewers, T.A. (2005), Gouge formation by dynamic pulverization during earthquake rupture, Earth Planet. Sci. Lett. 235(1–2), 361–374.CrossRefGoogle Scholar
  44. Renard, F., Gratier, J.-P., and Jamtveit, B. (2000), Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults, J. Struct. Geol. 22(10), 1395–1407.CrossRefGoogle Scholar
  45. Ricard, Y. and Bercovici, D. (2003), Two-phase damage theory and crustal rock failure: The theoretical ‘void’ limit, and the prediction of experimental data, Geophys. J. Internatil. 155, 1057–1064.CrossRefGoogle Scholar
  46. Rice, J.R. (1978), Thermodynamics of the quasi-static growth of Griffith cracks, J. Mechan. Phys. Sol. 26, 61–78.CrossRefGoogle Scholar
  47. Rockwell, T., Sisk, M., Girty, G., Dor, O., Wechsler, N., and Ben-Zion, Y. (2009), Chemical and physical characteristics of pulverized Tejon lookout Granite Adjacent to the San Andreas and Garlock faults: implications for earthquake physics, Pure Appl. Geophys., in press.Google Scholar
  48. Roscoe, K.H. and Schofield, A.N. (1963), Mechanical behaviour of an idealised ‘wet’ clay, European Conf. Soil Mechan. Foundation Engin. Essen, Germany: Deutsche Gesellschaft für Erd-und Grundbau, E.v., Wiesbaden, 46–54.Google Scholar
  49. Sammis, C.G. and Ben-Zion, Y. (2008), Mechanics of grain-size reduction in fault zones, J. Geophy. Res. 113, B02306.CrossRefGoogle Scholar
  50. Sammis, C.G., Osborne, R.H., Anderson, J.L., Banerdt, M., and White, P. (1986), Self-similar cataclasis in the formation of fault gouge, Pure Appl. Geophys. 124(1), 53–78.CrossRefGoogle Scholar
  51. Scholz, C. The Mechanics of Earthquakes and Faulting (Cambridge University Press 1990).Google Scholar
  52. Schultz, R.A. and Siddharthan, R. (2005), A general framework for the occurrence and faulting of deformation bands in porous granular rocks, Tectonophysics 411(1–4), 1–18.CrossRefGoogle Scholar
  53. Segall, P. and Rice, J.R. (1995), Dilatancy, compaction, and slip instability of a fluid-infiltrated fault, J. Geophys. Res. 100(B11), 22,155–122,171.CrossRefGoogle Scholar
  54. Shah, K.R. (1997), An elasto-plastic constitutive model for brittle-ductile transition in porous rocks, Internatl. J. Rock Mechan. Mining Sci. 34(3–4), 283.e281–283.e213.Google Scholar
  55. Sheldon, H.A., Barnicoat, A.C., and Ord, A., (2006), Numerical modelling of faulting and fluid flow in porous rocks: An approach based on critical state soil mechanics, J. Struct. Geol. 28(8), 1468–1482.CrossRefGoogle Scholar
  56. Shi, Z., Ben-Zion, Y. and Needleman, A. (2008), Properties of dynamic rupture and energy partition in a solid with a frictional interface, J. Mechan. Phys. Sol. 56, 5–24.CrossRefGoogle Scholar
  57. Sleep, N.H. and Blanpied, M.L. (1992), Creep, compaction and the weak rheology of major faults, Nature 359(6397), 687–692.CrossRefGoogle Scholar
  58. Steacy, S.J. and Sammis, C.G. (1991), An automaton for fractal patterns of fragmentation, Nature 353(6341), 250–252.CrossRefGoogle Scholar
  59. Templeton, E.L. and Rice, J.R., (2008), Off-fault plasticity and earthquake rupture dynamics, 1. Dry materials or neglect of fluid pressure changes, J. Geophys. Res. B (Solid Earth), 113, B09306, doi:10.1029/ 2007JB005529.CrossRefGoogle Scholar
  60. Tenthorey, E., Cox, S.F., and Todd, H.F. (2003), Evolution of strength recovery and permeability during fluidrock reaction in experimental fault zones, Earth Planet. Sci. Lett. 206(1–2), 161–172.CrossRefGoogle Scholar
  61. Wilson, B., Dewers, T., Reches, Z.E. and Brune, J. (2005), Particle size and energetics of gouge from earthquake rupture zones, Nature 434(7034), 749–752.CrossRefGoogle Scholar
  62. Wong, T., David, C., and Zhu, W. (1997), The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation, J. Geophys. Res. 102(B2), 3009–3025.CrossRefGoogle Scholar
  63. Xia, K. (2006), Scaling of fracture energies: The rationalization of different laboratory measurements, Geophys. Res. Lett. 33, L01305.CrossRefGoogle Scholar
  64. Zhang, S. and Tullis, T.E. (1998), The effect of fault slip on permeability and permeability anisotropy in quartz gouge, Tectonophysics 295(1–2), 41–52.Google Scholar
  65. Zhu, W. and Wong, T. (1997), The transition from brittle faulting to cataclastic flow: Permeability evolution, J. Geophys. Res. 102(B2), 3027–3041.CrossRefGoogle Scholar
  66. Ziegler, H. An introduction to thermomechanics, Second Ed. (North Holland, Amsterdam 1983).Google Scholar
  67. Zytynski, M., Randolph, M.F., Nova, R. and Wroth, C.P. (1978), On modelling the unloading-reloading behaviour of soils, Internatl. J. Numer. Analyt. Methods in Geomechan. 2(1), 87–93.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Giang D. Nguyen
    • 1
  • Itai Einav
    • 1
  1. 1.School of Civil Engineering J05The University of SydneySydneyAustralia

Personalised recommendations