Skip to main content

Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities

  • Chapter
  • First Online:
Book cover Mechanics, Structure and Evolution of Fault Zones

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10−3 to 10−9 s−1. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABAQUS/Standard (2000), 384 pp., Hibbit, Karlsson and Sorenson Inc.

    Google Scholar 

  • Attard, P. (2006), Theory for non-equilibrium statistical mechanics, Phys. Chem. Chem. Phys., 8, 3585–3611.

    Article  Google Scholar 

  • Chrysochoos, A. and Dupre, J.P. (1991), Experimental analysis of thermomechanical coupling by infra-red thermography, in Anisotropy and localization of plastic deformation, Proc. Plasticity’ 91, The third Internatl. Symp. on plasticity and its Current Applications (eds. Boehler; J-P and A. S. Khan, pp. 540–543, (Elsevier, London 1991)

    Google Scholar 

  • Chrysochoos, A. and F. Belmahjoub (1992). Thermographic analysis of thermomechanical couplings, Archives Mechanics 44(1), 55–68.

    Google Scholar 

  • Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik und Chemie, 125, 353–400.

    Article  Google Scholar 

  • Collins, I. F., and G. T. Houlsby (1997), Application of thermomechanical principles to the modelling of geotechnical materials, Proc. Roy. Soc. London, A 453 1964, 1975–2001.

    Article  Google Scholar 

  • Dieterich, J. H. (1979a), Modeling of Rock Friction. 1. Experimental Results and Constitutive Equations, J. Geophys. Res. 84(NB5), 2161–2168.

    Article  Google Scholar 

  • Dieterich, J. H. (1979b), Modeling of Rock Friction. 2. Simulation of Pre-Seismic Slip, J. Geophys. Res. 84(NB5), 2169–2175.

    Article  Google Scholar 

  • Dimanov, A. et al. (2003), Creep of polycrystalline anorthite and diopside, J. Geophys. Res. Sol. Earth, 108(B1).

    Google Scholar 

  • Fusseis, F. et al. (2009), Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones, Nature, doi:10.1038/nature08051.

    Google Scholar 

  • Fusseis, F. et al. (in prep), Earthquakes triggered by creep failure at the brittle ductile transition. Geology, in prep.

    Google Scholar 

  • Glansdorff, P. et al. (1973), Thermodynamics Theory of Structure, Stability and Fluctuations, Am. J. Phys. 41(1), 147–148.

    Article  Google Scholar 

  • Griggs, D. and Baker, D. (1969). The origin of deep-mantle earthquakes. In Properties of Matter under Unusual Conditions (ed. H. M. a. S. Fernbach), pp. 23–42, Interscience New York.

    Google Scholar 

  • Gueydan, F. et al. (2001), Grain-size-sensitive flow and shear-stress enhancement at the brittle-ductile transition of the continental crust, Internatl. J. Earth Sci. 90(1), 181.

    Article  Google Scholar 

  • Gueydan, F. et al. (2004), Mechanics of low-angle extensional shear zones at the brittle-ductile transition, J. Geophys. Res. B: Solid Earth, 109(12), 1.

    Article  Google Scholar 

  • Helmstetter, A., et al. (2004), Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides, J. Geophys. Res. 109, B002160.

    Article  Google Scholar 

  • Hobbs, B. E. et al. (1986), Earthquakes in the ductile regime, Pure Appl. Geophys. 124(1/2), 310–336.

    Google Scholar 

  • Houlsby, G., and A. Puzrin, Principles of Hyperplasticity, An Approach to Plasticity Theory Based on Thermodynamic Principles, 351 pp. (Springer, Berlin 2007).

    Google Scholar 

  • John, T. et al. (2009), Generation of intermediate-depth earthquakes by self-localizing thermal runaway, Nature Geoscience 2, 137–140.

    Article  Google Scholar 

  • Kanamori, H. et al. (1998), Frictional melting during the rupture of the 1994 Bolivian earthquake, Science 279(5352), 839–842.

    Article  Google Scholar 

  • Kohlstedt, D. L. et al. (1995), Strength of the lithosphere: Constraints imposed by laboratory measurements, J. Geophys. Res. 100(B9), 17587–17602.

    Article  Google Scholar 

  • Lavenda, B. H. Thermodynamics of Irreversible Processes, 182 pp. (MacMilland Press Ltd, London 1978).

    Google Scholar 

  • Lin, A. (2009), Seismic slipping in the lower crust, inferred from granulite-related pseudotachylyte in the Woodroffe thrust central Australia, Pure Appl. Geophys., in press.

    Google Scholar 

  • Linde, A. T. et al. (1996), A Slow Earthquake Sequence on the San Andreas Fault, Nature 383(6595), 65–68.

    Article  Google Scholar 

  • Liu, M. et al. (2007), Parallel computing of multi-scale continental deformation in the western United States: Preliminary results, Phys. Earth Planet. Inter. 163, 35–51.

    Article  Google Scholar 

  • Lyakhovsky, V. et al. (2005), A viscoelastic damage rheology and rate-and state-dependent friction, Geophys. J. Internatl. 161(1), 179.

    Article  Google Scholar 

  • Lyakhovsky, V. and Y. Ben-Zion (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Internatl. 172, 651–662.

    Article  Google Scholar 

  • Morris, J. (2008), Stronger, tougher steels, Science 320, 1023–1024.

    Article  Google Scholar 

  • Muller, L. (1964), The rock slide in the Vaiont valley, Felsmechanik Ingenieurgeologie, 2, 148–212.

    Google Scholar 

  • Ogawa, M. (1987), Shear instability in a viscoelastic material as the cause of deep focus earthquakes, J. Geophys. Res. 92(B1), 13801–13810.

    Article  Google Scholar 

  • Onsager, L. (1931), Reciprocal relations in irreversible processes, Phys. Rev. 38(12), 2265.

    Article  Google Scholar 

  • Parsons, T. et al. (2008), Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature 254, 509–510.

    Article  Google Scholar 

  • Poulet, T. and Regenauer-Lieb, K. (2009), A unified mult-scale thermodynamical framework for coupling geomechanical and chemical simulations, Tectonophysics, submitted.

    Google Scholar 

  • Rambert, G. et al. (2007), On the direct interaction between heat transfer, mass transport and chemical processes within gradient elasticity, European J. Mechanics-A/Solids 26(1), 68–87.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D. (2000), Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere, Phys. Earth Planet. Inter. 118, 89–102.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D. A. (2003), Modeling shear zones in geological and planetary sciences: Solid-and fluid-thermal-mechanical approaches, Earth Sci. Revi., 63, 295–349.

    Article  Google Scholar 

  • Regenauer-Lieb, K. and Yuen, D. A. (2004), Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics, Phys. Earth Planet. Inter. 142(1–2), 113–135.

    Article  Google Scholar 

  • Regenauer-Lieb, K., and Yuen, D. (2006), Quartz Rheology and short time-scale crustal instabilities, Pure Appl. Geophys. 163(9), 1–18.

    Article  Google Scholar 

  • Regenauer-Lieb, K., and Yuen, D. (2008), Multiscale brittle-ductile coupling and genesis of slow earthquakes, Pure Appl. Geophys. 165(3–4), 523–543.

    Article  Google Scholar 

  • Rice, J. (1971), Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mechan. Phys. Sol. 19(6), 433–455.

    Article  Google Scholar 

  • Robinson, R. and Benites, R. (1995), Synthetic seismicity models of multiple interacting faults, J. Geophys. Res. 100(B9), 18229–18238.

    Article  Google Scholar 

  • Rybacki, E. et al. (2008), High-strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust, Geophys. Res. Lett. 35, L04304

    Article  Google Scholar 

  • Schmid, S. M. Microfabric Studies as Indicators of deformation mechanisms and flow laws operative in Mountain Building. In Mountain Belts (ed. K. J. Hsu), (Academic Press, London 1982).

    Google Scholar 

  • Schubert, G. and Yuen, D. (1982), Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet, Nature 296, 127–130.

    Article  Google Scholar 

  • Siret, D. et al. (2008), PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling, Geotechnica Acta, doi:10.1007/s11440-008-0065-0.

    Google Scholar 

  • Strehlau, J. A discussion of the depth extent of rupture in large continental earthquakes. In Earthquake Source Mechanics, Proc. 5th Maurice Ewing Symp. on Earthquake Source Mechanics, May 1985 (ed., AGU, New York 1986).

    Google Scholar 

  • Tsai, V. and Ekstrom, G. (2007), Analysis of Glacial earthquakes, J. Geophys. Res. 112, F03S22.

    Article  Google Scholar 

  • Tse, S. T. and Rice, J. R. (1986), Crustal Earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res.-Sol. Earth and Planets 91(B9), 9452–9472.

    Article  Google Scholar 

  • Veveakis, E. et al. (2007), Thermo-poro-mechanics of creeping landslides: the 1963 Vaiont slide, Northern Italy, J. Geophys. Res. 112, F03026.

    Article  Google Scholar 

  • Yuen, D. A. et al. (1986), Explosive growth of shear-heating instabilities in the down-slope creep of ice sheets, J. Glaciol. 32(112), 314–320.

    Google Scholar 

  • Ziegler, H. An Introduction to Thermomechanics (North Holland, Amsterdam 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Regenauer-Lieb, K., Yuen, D.A., Fusseis, F. (2009). Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities. In: Ben-Zion, Y., Sammis, C. (eds) Mechanics, Structure and Evolution of Fault Zones. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0138-2_15

Download citation

Publish with us

Policies and ethics