Advertisement

Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities

  • Klaus Regenauer-Lieb
  • David A. Yuen
  • Florian Fusseis
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

The total rate of rock deformation results from competing deformation processes, including ductile and brittle mechanisms. Particular deformation styles arise from the dominance of certain mechanisms over others at different ambient conditions. Surprisingly, rates of deformation in naturally deformed rocks are found to cluster around two extremes, representing coseismic slip rates or viscous creep rates. Classical rock mechanics is traditionally used to interpret these instabilities. These approaches consider the principle of conservation of energy. We propose to go one step further and introduce a nonlinear far-from-equilibrium thermodynamic approach in which the central and explicit role of entropy controls instabilities. We also show how this quantity might be calculated for complex crustal systems. This approach provides strain-rate partitioning for natural deformation processes occurring at rates in the order of 10−3 to 10−9 s−1. We discuss these processes using examples of landslides and ice quakes or glacial surges. We will then illustrate how the mechanical mechanisms derived from these near-surface processes can be applied to deformation near the base of the seismogenic crust, especially to the phenomenon of slow earthquakes.

Key words

Seismology geodynamics instabilities thermodynamics entropy production numerical modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABAQUS/Standard (2000), 384 pp., Hibbit, Karlsson and Sorenson Inc.Google Scholar
  2. Attard, P. (2006), Theory for non-equilibrium statistical mechanics, Phys. Chem. Chem. Phys., 8, 3585–3611.CrossRefGoogle Scholar
  3. Chrysochoos, A. and Dupre, J.P. (1991), Experimental analysis of thermomechanical coupling by infra-red thermography, in Anisotropy and localization of plastic deformation, Proc. Plasticity’ 91, The third Internatl. Symp. on plasticity and its Current Applications (eds. Boehler; J-P and A. S. Khan, pp. 540–543, (Elsevier, London 1991)Google Scholar
  4. Chrysochoos, A. and F. Belmahjoub (1992). Thermographic analysis of thermomechanical couplings, Archives Mechanics 44(1), 55–68.Google Scholar
  5. Clausius, R. (1865). Über verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik und Chemie, 125, 353–400.CrossRefGoogle Scholar
  6. Collins, I. F., and G. T. Houlsby (1997), Application of thermomechanical principles to the modelling of geotechnical materials, Proc. Roy. Soc. London, A 453 1964, 1975–2001.CrossRefGoogle Scholar
  7. Dieterich, J. H. (1979a), Modeling of Rock Friction. 1. Experimental Results and Constitutive Equations, J. Geophys. Res. 84(NB5), 2161–2168.CrossRefGoogle Scholar
  8. Dieterich, J. H. (1979b), Modeling of Rock Friction. 2. Simulation of Pre-Seismic Slip, J. Geophys. Res. 84(NB5), 2169–2175.CrossRefGoogle Scholar
  9. Dimanov, A. et al. (2003), Creep of polycrystalline anorthite and diopside, J. Geophys. Res. Sol. Earth, 108(B1).Google Scholar
  10. Fusseis, F. et al. (2009), Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones, Nature, doi:10.1038/nature08051.Google Scholar
  11. Fusseis, F. et al. (in prep), Earthquakes triggered by creep failure at the brittle ductile transition. Geology, in prep.Google Scholar
  12. Glansdorff, P. et al. (1973), Thermodynamics Theory of Structure, Stability and Fluctuations, Am. J. Phys. 41(1), 147–148.CrossRefGoogle Scholar
  13. Griggs, D. and Baker, D. (1969). The origin of deep-mantle earthquakes. In Properties of Matter under Unusual Conditions (ed. H. M. a. S. Fernbach), pp. 23–42, Interscience New York.Google Scholar
  14. Gueydan, F. et al. (2001), Grain-size-sensitive flow and shear-stress enhancement at the brittle-ductile transition of the continental crust, Internatl. J. Earth Sci. 90(1), 181.CrossRefGoogle Scholar
  15. Gueydan, F. et al. (2004), Mechanics of low-angle extensional shear zones at the brittle-ductile transition, J. Geophys. Res. B: Solid Earth, 109(12), 1.CrossRefGoogle Scholar
  16. Helmstetter, A., et al. (2004), Slider block friction model for landslides: Application to Vaiont and La Clapiere landslides, J. Geophys. Res. 109, B002160.CrossRefGoogle Scholar
  17. Hobbs, B. E. et al. (1986), Earthquakes in the ductile regime, Pure Appl. Geophys. 124(1/2), 310–336.Google Scholar
  18. Houlsby, G., and A. Puzrin, Principles of Hyperplasticity, An Approach to Plasticity Theory Based on Thermodynamic Principles, 351 pp. (Springer, Berlin 2007).Google Scholar
  19. John, T. et al. (2009), Generation of intermediate-depth earthquakes by self-localizing thermal runaway, Nature Geoscience 2, 137–140.CrossRefGoogle Scholar
  20. Kanamori, H. et al. (1998), Frictional melting during the rupture of the 1994 Bolivian earthquake, Science 279(5352), 839–842.CrossRefGoogle Scholar
  21. Kohlstedt, D. L. et al. (1995), Strength of the lithosphere: Constraints imposed by laboratory measurements, J. Geophys. Res. 100(B9), 17587–17602.CrossRefGoogle Scholar
  22. Lavenda, B. H. Thermodynamics of Irreversible Processes, 182 pp. (MacMilland Press Ltd, London 1978).Google Scholar
  23. Lin, A. (2009), Seismic slipping in the lower crust, inferred from granulite-related pseudotachylyte in the Woodroffe thrust central Australia, Pure Appl. Geophys., in press.Google Scholar
  24. Linde, A. T. et al. (1996), A Slow Earthquake Sequence on the San Andreas Fault, Nature 383(6595), 65–68.CrossRefGoogle Scholar
  25. Liu, M. et al. (2007), Parallel computing of multi-scale continental deformation in the western United States: Preliminary results, Phys. Earth Planet. Inter. 163, 35–51.CrossRefGoogle Scholar
  26. Lyakhovsky, V. et al. (2005), A viscoelastic damage rheology and rate-and state-dependent friction, Geophys. J. Internatl. 161(1), 179.CrossRefGoogle Scholar
  27. Lyakhovsky, V. and Y. Ben-Zion (2008), Scaling relations of earthquakes and aseismic deformation in a damage rheology model, Geophys. J. Internatl. 172, 651–662.CrossRefGoogle Scholar
  28. Morris, J. (2008), Stronger, tougher steels, Science 320, 1023–1024.CrossRefGoogle Scholar
  29. Muller, L. (1964), The rock slide in the Vaiont valley, Felsmechanik Ingenieurgeologie, 2, 148–212.Google Scholar
  30. Ogawa, M. (1987), Shear instability in a viscoelastic material as the cause of deep focus earthquakes, J. Geophys. Res. 92(B1), 13801–13810.CrossRefGoogle Scholar
  31. Onsager, L. (1931), Reciprocal relations in irreversible processes, Phys. Rev. 38(12), 2265.CrossRefGoogle Scholar
  32. Parsons, T. et al. (2008), Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature 254, 509–510.CrossRefGoogle Scholar
  33. Poulet, T. and Regenauer-Lieb, K. (2009), A unified mult-scale thermodynamical framework for coupling geomechanical and chemical simulations, Tectonophysics, submitted.Google Scholar
  34. Rambert, G. et al. (2007), On the direct interaction between heat transfer, mass transport and chemical processes within gradient elasticity, European J. Mechanics-A/Solids 26(1), 68–87.CrossRefGoogle Scholar
  35. Regenauer-Lieb, K. and Yuen, D. (2000), Quasi-adiabatic instabilities associated with necking processes of an elasto-viscoplastic lithosphere, Phys. Earth Planet. Inter. 118, 89–102.CrossRefGoogle Scholar
  36. Regenauer-Lieb, K. and Yuen, D. A. (2003), Modeling shear zones in geological and planetary sciences: Solid-and fluid-thermal-mechanical approaches, Earth Sci. Revi., 63, 295–349.CrossRefGoogle Scholar
  37. Regenauer-Lieb, K. and Yuen, D. A. (2004), Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics, Phys. Earth Planet. Inter. 142(1–2), 113–135.CrossRefGoogle Scholar
  38. Regenauer-Lieb, K., and Yuen, D. (2006), Quartz Rheology and short time-scale crustal instabilities, Pure Appl. Geophys. 163(9), 1–18.CrossRefGoogle Scholar
  39. Regenauer-Lieb, K., and Yuen, D. (2008), Multiscale brittle-ductile coupling and genesis of slow earthquakes, Pure Appl. Geophys. 165(3–4), 523–543.CrossRefGoogle Scholar
  40. Rice, J. (1971), Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mechan. Phys. Sol. 19(6), 433–455.CrossRefGoogle Scholar
  41. Robinson, R. and Benites, R. (1995), Synthetic seismicity models of multiple interacting faults, J. Geophys. Res. 100(B9), 18229–18238.CrossRefGoogle Scholar
  42. Rybacki, E. et al. (2008), High-strain creep of feldspar rocks: Implications for cavitation and ductile failure in the lower crust, Geophys. Res. Lett. 35, L04304CrossRefGoogle Scholar
  43. Schmid, S. M. Microfabric Studies as Indicators of deformation mechanisms and flow laws operative in Mountain Building. In Mountain Belts (ed. K. J. Hsu), (Academic Press, London 1982).Google Scholar
  44. Schubert, G. and Yuen, D. (1982), Initiation of ice ages by creep instability and surging of the East Antarctic ice sheet, Nature 296, 127–130.CrossRefGoogle Scholar
  45. Siret, D. et al. (2008), PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling, Geotechnica Acta, doi:10.1007/s11440-008-0065-0.Google Scholar
  46. Strehlau, J. A discussion of the depth extent of rupture in large continental earthquakes. In Earthquake Source Mechanics, Proc. 5th Maurice Ewing Symp. on Earthquake Source Mechanics, May 1985 (ed., AGU, New York 1986).Google Scholar
  47. Tsai, V. and Ekstrom, G. (2007), Analysis of Glacial earthquakes, J. Geophys. Res. 112, F03S22.CrossRefGoogle Scholar
  48. Tse, S. T. and Rice, J. R. (1986), Crustal Earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res.-Sol. Earth and Planets 91(B9), 9452–9472.CrossRefGoogle Scholar
  49. Veveakis, E. et al. (2007), Thermo-poro-mechanics of creeping landslides: the 1963 Vaiont slide, Northern Italy, J. Geophys. Res. 112, F03026.CrossRefGoogle Scholar
  50. Yuen, D. A. et al. (1986), Explosive growth of shear-heating instabilities in the down-slope creep of ice sheets, J. Glaciol. 32(112), 314–320.Google Scholar
  51. Ziegler, H. An Introduction to Thermomechanics (North Holland, Amsterdam 1983).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Klaus Regenauer-Lieb
    • 1
    • 2
  • David A. Yuen
    • 3
  • Florian Fusseis
    • 1
  1. 1.Multi-scale Earth System Dynamics, School of Earth and EnvironmentUniversity of Western AustraliaCrawleyAustralia
  2. 2.CSIRO Exploration and MiningBentleyAustralia
  3. 3.Department of Geology and Geophysics and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations