Advertisement

Spatio-temporal Slip, and Stress Level on the Faults within the Western Foothills of Taiwan: Implications for Fault Frictional Properties

  • Ya-Ju Hsu
  • Jean-Philippe Avouac
  • Shui-Beih Yu
  • Chien-Hsin Chang
  • Yih-Min Wu
  • Jochen Woessner
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

We use preseismic, coseismic, and postseismic GPS data of the 1999 Chi-Chi earthquake to infer spatio-temporal variation of fault slip and frictional behavior on the Chelungpu fault. The geodetic data shows that coseismic slip during the Chi-Chi earthquake occurred within a patch that was locked in the period preceding the earthquake, and that afterslip occurred dominantly downdip from the ruptured area. To first-order, the observed pattern and the temporal evolution of afterslip is consistent with models of the seismic cycle based on rate-and-state friction. Comparison with the distribution of temperature on the fault derived from thermokinematic modeling shows that aseismic slip becomes dominant where temperature is estimated to exceed 200° at depth. This inference is consistent with the temperature induced transition from velocity-weakening to velocity-strengthening friction that is observed in laboratory experiments on quartzo-feldspathic rocks. The time evolution of aftership is consistent with afterslip being governed by velocity-strengthening frictional sliding. The dependency of friction, μ, on the sliding velocity, V, is estimated to be ∂μ/∂In V=8 × 10−3. We report an azimuthal difference of about 10–20° between preseismic and postseismic GPS velocities, which we interpret to reflect the very low shear stress on the creeping portion of the decollement beneath the Central Range, of the order of 1–3 MPa, implying a very low friction of about 0.01. This study highlights the importance of temperature and pore pressure in determining fault frictional sliding.

Key words

The Chi-Chi earthquake fault friction fault rheology stress fault slip distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelier, J., Chu, H. T., and Lee, J. C. (1997), Shear concentration in a collision zone: Kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan, Tectonophysics 274, 117–143.CrossRefGoogle Scholar
  2. Avouac, J. P. (2003), Mountain building, erosion and the seismic cycle in the Nepal Himalaya. In Adv. Geophys. (ed. R. Dmowska, pp. 1–79 Elsevier, Amsterdam, 2003).Google Scholar
  3. Avouac, J. P., Ayoub, F., Leprince, S., Konca, O. and Helmberger, D. V. (2006), The 2005, M w 7.6 Kashmir earthquake: Sub-pixel correlation of ASTER images and seismic waveforms analysis, Earth Planet. Sci. Lett. 249, 514–528.CrossRefGoogle Scholar
  4. Ben-Zion, Y. (2001), Dynamic ruptures in recent models of earthquake faults, J. Mech. Phys. Solids 49, 2209–2244.CrossRefGoogle Scholar
  5. Ben-Zion, Y. and Lyakhovsky, V. (2006), Analysis of aftershocks in a lithospheric model with seismogenic zone governed by damage rheology, Geophys. J. Int. 165, 197–210.CrossRefGoogle Scholar
  6. Blanpied, M. L., Lockner, D. A., and Byerlee, J. D. (1995), Frictional slip of granite at hydrothermal conditions, J. Geophys. Res. 100, 13045–13064.CrossRefGoogle Scholar
  7. Bollinger, L., Avouac, J. P., Cattin, R., and Pandey, M. R. (2004), Stress buildup in the Himalaya, J. Geophys. Res. 109, doi: 10.1029/2003JB002911.Google Scholar
  8. Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F. and Baumgartner, J. (1997), Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, J. Geophys. Res. 102, 18453–18475.CrossRefGoogle Scholar
  9. Burford, R. O. and Harsh, P. W. (1980), Slip on the San Andreas fault in central California from alignment array surveys, Bull. Seismol. Soc. Am. 70, 1233–1261.Google Scholar
  10. Burgmann, R., Kogan, M. G., Steblov, G. M., Hilley, G., Levin, V. E., and Apel, E. (2005), Interseismic coupling and asperity distribution along the Kamchatka subduction zone, J. Geophys. Res. 110, 10.1029/ 2005JB003648.Google Scholar
  11. Byerlee, J. (1978), Friction of Rocks, Pure Appl. Geophys. 116, 615–626.CrossRefGoogle Scholar
  12. Carena, S., Suppe, J. and Kao, H. (2002), Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography, Geology 30, 935–938.CrossRefGoogle Scholar
  13. Cattin, R. and Avouac, J. P. (2000), Modeling mountain building and the seismic cycle in the Himalaya of Nepal, J. Geophys. Res. 105, 13389–13407.CrossRefGoogle Scholar
  14. Chan, Y. C., Okamoto, K., Yui, T. F., Iizuka, Y., and Chu, H. T. (2005), Fossil fluid reservoir beneath a duplex fault structure within the Central Range of Taiwan: Implications for fluid leakage and lubrication during earthquake rupturing process, Terra Nova 17, 493–499.CrossRefGoogle Scholar
  15. Chang, C. H., Wu, Y. M., Zhao, L., and Wu, F. T. (2007), Aftershocks of the 1999 Chi-Chi, Taiwan, earthquake: The first hour, Bull. Seismol. Soc. Am. 97, 1245–1258.CrossRefGoogle Scholar
  16. Chen, C. C. and Chen, C.-S. (2002), Sanyi-Puli conductivity anomaly in NW Taiwan and its implication for the tectonics of the 1999 Chi-Chi earthquake, Geophys. Res. Lett. 29, 1166.CrossRefGoogle Scholar
  17. Chen, W. S., Lee, K. J., Lee, L. S., Ponti, D. J., Prentice, C., Chen, Y. G., Chang, H. C., and Lee, Y. H. (2004), Paleoseismology of the Chelungpu Fault during the past 1900 years, Quaternary International 115, 167–176.CrossRefGoogle Scholar
  18. Chen, W. S., Yang, C. C., Yen, I. C., Lee, L. S., Lee, K. J., Yang, H. C., Chang, H. C., Ota, Y., Lin, C. W., Lin, W. H., Shih, T. S., and Lu, S. T. (2007a), Late Holocene paleoseismicity of the southern part of the Chelungpu fault in central Taiwan: Evidence from the Chushan excavation site, Bull. Seismol. Soc. Am. 97, 1–13.CrossRefGoogle Scholar
  19. Chen, Y. G., Lai, K. Y., Lee, Y. H., Suppe, J., Chen, W. S., Lin, Y. N. N., Wang, Y., Hung, J. H., and Kuo, Y. T. (2007b), Coseismic fold scarps and their kinematic behavior in the 1999 Chi-Chi earthquake Taiwan, J. Geophys. Res. 112, doi: 10.1029/2006JB004388.Google Scholar
  20. Chester, F. M. (1995), A rheologic model for wet crust applied to strike-slip faults, J. Geophys. Res. 100, 13033–13044.CrossRefGoogle Scholar
  21. Dahlen, F. A. (1990), Critical taper model of fold-and-thrust belts and accretionary wedges, Annu. Rev. Earth Planet. Sci. 18, 55–99.CrossRefGoogle Scholar
  22. Davis, D., Suppe, J. and Dahlen, F. A. (1983), Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res. 88, 1153–1172.CrossRefGoogle Scholar
  23. Dominguez, S., Avouac, J. P. and Michel, R. (2003), Horizontal coseismic deformation of the 1999 Chi-Chi earthquake measured from SPOT satellite images: Implications for the seismic cycle along the western foothills of central Taiwan, J. Geophys. Res. 108, doi: 10.1029/2001JB000951.Google Scholar
  24. Fialko, Y., Sandwell, D., Simons, M., and Rosen, P. (2005), Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit, Nature, 435, 295–299.CrossRefGoogle Scholar
  25. Hardebeck, J. L. and Hauksson, E. (2001), Crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res. 106, 21859–21882.CrossRefGoogle Scholar
  26. Hauksson, E. (1990), Earthquakes, faulting and stress in the Los Angeles Basin, J. Geophys. Res. 95, 15,365–315,394.CrossRefGoogle Scholar
  27. Hearn, E. H., Burgmann, R., and Reilinger, R. E. (2002), Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter, Bull. Seismol. Soc. Am. 92, 172–193.CrossRefGoogle Scholar
  28. Hsu, Y.-J., Simons, M., Yu, S.-B., Kuo, L.-C., and Chen, H.-Y. (2003), A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt., Earth Planet. Sci. Lett. 211, 287–294.CrossRefGoogle Scholar
  29. Hsu, Y. J., Bechor, N., Segall, P., Yu. S.-B., Kuo, L. C., and Ma, K. F. (2002), Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett. 29, 10.1029/2002GL014967.Google Scholar
  30. Hsu, Y. J., Simons, M., Avouac, J. P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y. (2006), Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science 312, 1921–1926.CrossRefGoogle Scholar
  31. Hsu, Y. J., Segall, P., Yu, S. B., Kuo, L. C., and Williams, C. A. (2007), Temporal and spatial variations of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int. 169, 367–379.CrossRefGoogle Scholar
  32. Hyndman, R. D., Yamano, M., and Oleskevich, D. A. (1997), The seismogenic zone of subduction thrust faults, The Island Arc, 6, 244–260.CrossRefGoogle Scholar
  33. Ji, C., Helmberger, D. V., Song, T.-R. A., Ma, K.-F., and Wald, D. J. (2001), Slip distribution and tectonic implications of the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett. 28, 4379–4382.CrossRefGoogle Scholar
  34. Ji, C., Helmberger, D. V., Wald, D. J., and Ma, K.-F. (2003), Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res. 108, doi: 10.1029/2002JB001764.Google Scholar
  35. Johnson, K. J., Hsu, Y.-J., Segall, P., and Yu, S.-B. (2001), Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophys. Res. Lett. 28, 2285–2288.CrossRefGoogle Scholar
  36. Johnson, K. M. and Segall, P. (2004), Imaging the ramp-decollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake, Tectonophysics 378, 123–139.CrossRefGoogle Scholar
  37. Johnson, K. M., Burgmann, R., and Larson, K. (2006), Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake, Bull. Seismol. Soc. Am. 96, S321–S338.CrossRefGoogle Scholar
  38. Jones, L. M., (1988), Focal mechanisms and the state of stress on the San Andreas fault in southern California, J. Geophys. Res. 93, 8869–8891.CrossRefGoogle Scholar
  39. Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995), Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res. 100, 587–517, 602.CrossRefGoogle Scholar
  40. Konca, A. O., Hjorleifsdottir, V., Song, T. R. A., Avouac, J. P., Helmberger, D. V., Ji, C., Sieh, K., Briggs, R., and Meltzner, A. (2007), Rupture kinematics of the 2005 M-w 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seismol. Soc. Am., 97, S307–S322.CrossRefGoogle Scholar
  41. Lapusta, N., Rice, J. R., Ben-Zion, Y., and Zheng, G. T. (2000), Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate-and state-dependent friction, J. Geophys. Res., 105, 23765–23789.CrossRefGoogle Scholar
  42. Lee, J.-C., Chen, Y.-G., Sieh, K., Mueller, K., Chen, W.-S., Chu, H.-T., Chan, Y.-C., Rubin, C., and Yeats, R. (2001a), A vertical exposure of the 1999 surface rupture of the Chelungpu fault at Wufeng, western Taiwan: Structural and paleoseismic implications for an active thrust fault, Bull. Seismol. Soc. Am. 91, 914–929.CrossRefGoogle Scholar
  43. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., and Jeng, F. S. (2001b), Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan, Tectonophysics 333, 219–240.CrossRefGoogle Scholar
  44. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., and Rau, R. J. (2003), Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001, J. Geophys. Res. 108, doi:10.1029/2003JB002394.Google Scholar
  45. Lisowski, M. and Prescott, W. H. (1981), Short range distance measurements along the San Andreas fault system in central California, Bull. Seismol. Soc. Am., 71, 1607–1624.Google Scholar
  46. Liu, C. C. and Yu, S.-B. (1990), Vertical crustal movements in eastern Taiwan and their tectonic implications, Tectonophysics 183, 111–119.CrossRefGoogle Scholar
  47. Loevenbruck, A., Cattin, R., Le Pichon, X., Courty, M. L., and Yu, S. B. (2001), Seismic cycle in Taiwan derived from GPS measurements, Comptes Rendus De L Academie Des Sciences Serie li Fascicule a-Sciences De La Terre Et Des Planetes, 333, 57–64.Google Scholar
  48. Loevenbruck, A., Cattin, R., Le Pichon X., Dominguez, S., and Michel, R. (2004), Coseismic slip resolution and postseismic relaxation time of the 1999 Chi-Chi, Taiwan, earthquake as constrained by geological observations, geodetic measurements and seismicity, Geophys. J. Int. 158, 310–326.CrossRefGoogle Scholar
  49. Marone, C., Raleigh, C. B., and Scholz, C. (1990), Frictional behavior and constitutive modelling of simulated fault gouge, J. Geophys. Res. 95, 7007–7025.CrossRefGoogle Scholar
  50. Marone, C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci. 26, 643–696.CrossRefGoogle Scholar
  51. Matthews, M. V. and Segall, P. (1993), Estimation of depth-dependent fault slip from measured surface deformation with application to the 1906 San Francisco earthquake, J. Geophys. Res. 98, 12,153–112,163.CrossRefGoogle Scholar
  52. Michael, A. J. (1984), Determination of stress from slip data-faults and folds, J. Geophys. Res. 89, 1517–1526.CrossRefGoogle Scholar
  53. Michael, A. J., (1987), Use offocal mechanisms to determine Stress-A control study, J. Geophys. Res., 92, 357–368.CrossRefGoogle Scholar
  54. Miyazaki, S., Segall, P., Fukuda, J., and Kato, T., (2004), Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys. Res. Lett. 31, doi:10.1029/2003GL019410.Google Scholar
  55. Mount, V. S. and Suppe, J., (1987), State of stress near the San-Andreas fault — Implications for wrench tectonics, Geology 15, 1143–1146.CrossRefGoogle Scholar
  56. Okada, Y., (1985). Surface deformation to shear and tensile faults in a half space, Bull. Seism. Soc. Am. 75, 1135–1154.Google Scholar
  57. Oleskevich, D. A., Hydman, R. D., and Wang, K., (1999), The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res. 104, 14965–14991.CrossRefGoogle Scholar
  58. Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S.-B., and Lee, C.-T. (2003), Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data, Earth Planet. Sci. Lett., 212, 73–88.CrossRefGoogle Scholar
  59. Peacock, S. M. and Hyndman, R. D., (1999), Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett. 26, 2517–2520.CrossRefGoogle Scholar
  60. Perfettini, H. and Avouac, J. P. (2004), Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J. Geophys. Res. 109, doi:10.1029/2003JB002488.Google Scholar
  61. Perfettini, H., Avouac, J. P., and Ruegg, J. C. (2005), Geodetic displacements and aftershocks following the 2001 Mw=8.4 Peru earthquake: Implications for the mechanics of the earthquake cycle along subduction zones, J. Geophys. Res., 110, doi:10.1029/2004JB003522.Google Scholar
  62. Perfetini, H., and Ampuero, J. P. (2008), Dynamics of a velocity strengthening fault region: Implications for slow earthquakes and postseismic slip, J. Geophys. Res. 113, doi:10.1029/2007JB005398.Google Scholar
  63. Rolandone, F., Burgmann, R., and Nadeau, R. M. (2004), The evolution of the seismic-aseismic transition during the earthquake cycle: Constraints from the time-dependent depth distribution of aftershocks, Geophys. Res. Lett. 31, 10.1029/2004GL021379.Google Scholar
  64. Savage, J. C. (1983), A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res. 88, 4984–4996.CrossRefGoogle Scholar
  65. Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., and Ellsworth, W. L. (2002), Highresolution image of Calaveras Fault seismicity, J. Geophys. Res. 107, 10.1029/2001JB000633.Google Scholar
  66. Scholz, C., The Mechanics of Earthquakes and Faulting, 439 pp. Cambridge University Press, New York 1990).Google Scholar
  67. Scholz, C. H. (1998), Earthquakes and friction laws, Nature 391, 37–42.CrossRefGoogle Scholar
  68. Scholz, C. H. (2000), Evidence for a strong San Andreas fault, Geology, 28, 163–166CrossRefGoogle Scholar
  69. Shaw, B. E. (1995), Frictional weakening and slip complexity in earthquake faults, J. Geophys. Res. 100, 18239–18251.CrossRefGoogle Scholar
  70. Shimazaki, K. and Nakata, T. (1980), Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett. 7, 279–282.CrossRefGoogle Scholar
  71. Shin, T. C. and Teng, T. L. (2001), An overview of the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am. 91, 895–913.CrossRefGoogle Scholar
  72. Sieh, K. (2000), The repetition of large earthquake ruptures, paper presented at Hokudan International Symp. and School on Active (Letter Press Co. Ltd., Faulting Hokudan, Japan, 2000).Google Scholar
  73. Simoes, M., Avouac, J. P., Beyssac, O., Goffe, B., Farley, K. A., and Chen, L. (2007a), Mountain building in Taiwan: A thermokinematic model, J. Geophys. Res. 112, doi: 10.1029/2006JB004824.Google Scholar
  74. Simoes, M., Avouac, J. P., and Chen, Y. G. (2007b), Slip rates on the Chelungpu and Chushiang thrust faults inferred from a deformed strath terrace along the Dungpuna river, west central Taiwan, J. Geophys. Res. 112, doi:10.1029/2005JB004200.Google Scholar
  75. Simons, M., Fialko, Y., and Rivera, L. (2002), Coseismic deformation from the 1999 M-w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations, Bull. Seismol. Soc. Am. 92, 1390–1402.CrossRefGoogle Scholar
  76. Streig, A. R., Rubin, C. M., Chen, W. S., Chen, Y. G., Lee, L. S., Thompson, S. C., Madden, C., and Lu, S. T. (2007), Evidence for prehistoric coseismic folding along the Tsaotun segment of the Chelungpu fault near Nan-Tou. Taiwan, J. Geophys. Res. 112. doi:10.1029/2006JB004493.Google Scholar
  77. Suppe, J. (2007), Absolute fault and crustal strength from wedge tapers, Geology 35, 1127–1130.CrossRefGoogle Scholar
  78. Titus, S. J., DeMets, C., and Tikoff, B. (2005), New Slip rate estimates for the creeping segment of the San Andreas fault, California, Geology 33, 161–240.CrossRefGoogle Scholar
  79. Tse, S. T., and Rice, J. R. (1986), Crustal earthquake instability in relation to depth variation of frictional slip properties, J. Geophys. Res. 91, 9452–9472.CrossRefGoogle Scholar
  80. Vergne, J., Cattin, R., and Avouac, J.-P. (2001), On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults, Geophys. J. Int. 147, 155–162.CrossRefGoogle Scholar
  81. Wesson, R. L., and Boyd, O. S. (2007), Stress before and after the 2002 Denali fault earthquake, Geophys. Res. Lett. 34, doi:10.1029/2007GL029189.Google Scholar
  82. Wu, Y. M., Chang, C. H., Zhao, L., Shyu, J. B. H., Chen, Y. G., Sieh, K., and Avouac, J. P. (2007), Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations, J. Geophys. Res. 112, doi:10.1029/2007JB004983.Google Scholar
  83. Wu, Y. M., Zhao, L., Chang, C. H., and Hsu, Y. J. (2008), Focal-mechanism determination in Taiwan by genetic algorithm, Bull. Seismol. Soc. Am. 98, 651–661.CrossRefGoogle Scholar
  84. Yu, S.-B., Kuo, L.-C., Hsu, Y.-J., Su, H.-H., Liu, C. C., Hou, C.-S., Lee, J.-F., Lai, T.-C, Liu, C. C., Liu, C.-L., Tseng, T.-F., Tsai, C.-S., and Shin, T.-C. (2001), Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake, Bull. Seismol. Soc. Am. 91, 995–1012.CrossRefGoogle Scholar
  85. Yu, S.-B., Hsu, Y.-J., Kuo, L.-C., Chen, H.-Y., and Liu, C.-C. (2003), GPS measurements of postseismic deformation following the 1999 Chi-Chi earthquake, J. Geophys. Res. 108, 2520.CrossRefGoogle Scholar
  86. Yu, S. B. and Liu, C. C. (1989), Fault creep on the central segment of the Longitudinal Valley Fault, eastern Taiwan, Proc. Geol. Soc. China 32, 209–231.Google Scholar
  87. Yu, S. B., and Kuo, L. C. (2001), Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan, Tectonophysics 333, 199–217.CrossRefGoogle Scholar
  88. Yue, L. F., Suppe, J., and Hung, J. H. (2005), Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (M-w=7.6), J. Struct. Geol. 27, 2058–2083.CrossRefGoogle Scholar
  89. Zoback, M. D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J. P., Healy, J. H., Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, I. G., Scotti, O., and Wentworth, C. (1987), New Evidence on the state of stress of the San-Andreas fault system, Science 238, 1105–1111.CrossRefGoogle Scholar
  90. Zoback, M. D., and Townend, J. (2001), Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics 336, 19–30.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Ya-Ju Hsu
    • 1
    • 2
  • Jean-Philippe Avouac
    • 2
  • Shui-Beih Yu
    • 1
  • Chien-Hsin Chang
    • 3
  • Yih-Min Wu
    • 4
  • Jochen Woessner
    • 2
    • 5
  1. 1.Institute of Earth SciencesAcademia SinicaTaipeiTaiwan
  2. 2.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyUSA
  3. 3.Central Weather BureauTaipeiTaiwan
  4. 4.Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan
  5. 5.Swiss Seismological ServiceETH ZürichZürichSwitzerland

Personalised recommendations