Advertisement

Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements

  • Thibault Candela
  • François Renard
  • Michel Bouchon
  • Alexandre Brouste
  • David Marsan
  • Jean Schmittbuhl
  • Christophe Voisin
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Accurate description of the topography of active fault surfaces represents an important geophysical issue because this topography is strongly related to the stress distribution along fault planes, and therefore to processes implicated in earthquake nucleation, propagation, and arrest. To date, due to technical limitations, studies of natural fault roughness either performed using laboratory of field profilometers, were obtained mainly from 1-D profiles. With the recent development of Light Detection And Ranging (LIDAR) apparatus, it is now possible to measure accurately the 3-D topography of rough surfaces with a comparable resolution in all directions, both at field and laboratory scales. In the present study, we have investigated the scaling properties including possible anisotropy properties of several outcrops of two natural fault surfaces (Vuache strike-slip fault, France, and Magnola normal fault, Italy) in limestones. At the field scale, digital elevation models of the fault roughness were obtained over surfaces of 0.25 m2 to 600 m2 with a height resolution ranging from 0.5 mm to 20 mm. At the laboratory scale, the 3-D geometry was measured on two slip planes, using a laser profilometer with a spatial resolution of 20 μm and a height resolution less than 1 μm.

Several signal processing tools exist for analyzing the statistical properties of rough surfaces with self-affine properties. Among them we used six signal processing techniques: (i) the root-mean-squares correlation (RMS), (ii) the maximum-minimum height difference (MM), (iii) the correlation function (COR), (iv) the RMS correlation function (RMS-COR), (v) the Fourier power spectrum (FPS), and (vi) the wavelet power spectrum (WPS). To investigate quantitatively the reliability and accuracy of the different statistical methods, synthetic self-affine surfaces were generated with azimuthal variation of the scaling exponent, similar to that which is observed for natural fault surfaces. The accuracy of the signal processing techniques is assessed in terms of the difference between the “input” self-affine exponent used for the synthetic construction and the “output” exponent recovered by those different methods. Two kinds of biases have been identified: Artifacts inherent to data acquisition and intrinsic errors of the methods themselves. In the latter case, the statistical results of our parametric study provide a quantitative estimate of the dependence of the accuracy with system size and directional morphological anisotropy. Finally, based on this parametric study, we used the most reliable techniques (RMS-COR, FPS, WPS) to analyze field data. These three methods provide complementary results. The EPS and WPS methods determine a robust characterization of the fault surface roughness in the direction of striations and perpendicular to them. The RMS-COR method allows investigation of the azimuth dependence of the scaling exponent. For both field and laboratory data, the topography perpendicular to the slip direction displays a similar scaling exponent H =0.8. However, our analysis indicates that for the Magnola fault surface the scaling roughness exponent parallel to the mechanical striation is identical at large and small scales H / /=0.6–0.7, whereas for the Vuache fault surface it is characterized by two different self-affine regimes at small and large scales. We interpret this cross-over length scale as a witness of different mechanical processes responsible for the creation of fault topography at different spatial scales.

Key words

Fault 3-D laser scanner fault-surface roughness self-affine surface roughness exponent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amitrano, D. and Schmittbuhl, J. (2002), Fracture roughness and gouge distribution of a granite shear band, J. Geophys. Res. 107(B12), 2375, doi: 10.1029/2002JB001761.CrossRefGoogle Scholar
  2. Aki, K. (1984), Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res. 89, 5867–5872.CrossRefGoogle Scholar
  3. Barabasi, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge University Press. 1995).Google Scholar
  4. Bierme, H., Meeschaert, M. M., and Scheffler, H.-P. (2007), Operator scaling stable random fields, Stoch. Proc. Appl. 117, 312–332.CrossRefGoogle Scholar
  5. Ben-Zion, Y. and Sammis, C.G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715, doi: 10.1007/PL00012554.CrossRefGoogle Scholar
  6. Bouchaud, E. (1997), Scaling properties of cracks, J. Phys. Condens. Matter 9, 4319–4344.CrossRefGoogle Scholar
  7. Brown, S. R. and Scholz, C. H. (1985), Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res. 90, 2575–2582.Google Scholar
  8. Campillo, M., Favreau, P., Ionescu, I. R., and Voisin, C. (2001), On the effective friction law of an heterogeneous fault, J. Geophys. Res. 106, 307–322.CrossRefGoogle Scholar
  9. Carcaillet, J., Manighetti, I., Chauvel, C., Schlagenhauf, A., and Nicole, J. M. (2008), Identifying past earthquakes on an active normal fault (Magnola, Italy) from the chemical analysis of its exhumed carbonate fault plane, Earth Planet. Sci. Lett. 271, 145–158, doi: 10.1016/j.epsl.2008.03.059.CrossRefGoogle Scholar
  10. Chen, G. and Spetzler, H. A. (1993), Topographic characteristics of laboratory-induced shear fractures, Pure Appl. Geophys. 140, 123–135.CrossRefGoogle Scholar
  11. Clausel, M. and Vedel, B. (2008), Explicit constructions of operator scaling stable random Gaussian fields, preprint to Adv. Appl. Prob.Google Scholar
  12. Goscombe, B. D., Passchier, C., and Handa, M. (2004), Boudinage classification: end-member Boudin types and modified boudin structures, J. Struct. Geol. 26, 739–763.CrossRefGoogle Scholar
  13. Johnson, A. M. and Fletcher, R. C., Folding of Viscous Layers: Mechanical Analysis and Interpretation of Structures in Deformed Rock (Columbia University Press. 1994).Google Scholar
  14. Lay, T., Kanamori, H., and Ruff. (1982), The asperity model and the nature of large subduction zone earthquakes, Earth. Predict. Res. 1, 3–71.Google Scholar
  15. Lee, J.-J. and Bruhn, R. (1996), Structural anisotropy of normal fault surfaces, J. Struct. Geol. 18, 1043–1059.CrossRefGoogle Scholar
  16. Libicki, E. and Ben-Zion, Y. (2005), Stochastic Branching Models of Fault Surfaces and Estimated Fractal Dimensions, Pure Appl. Geophys. 162, 1077–1111, doi: 10.1007/s00024-004-2662-7.CrossRefGoogle Scholar
  17. Mandelbrot, B. B. (1985), Self-affine fractals and fractal dimension, Phys. Scripta. 32, 257–260.CrossRefGoogle Scholar
  18. Mandelbrot, B. B., Fractals in Physics (Elsevier, Amsterdam. 1986).Google Scholar
  19. Marsan, D. (2006), Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model, J. Geophys. Res. 111, B06305, doi: 10.1029/2005JB004060.CrossRefGoogle Scholar
  20. Meakin, P., Fractals: Scaling and Growth far From Equilibrium (Cambridge Univ. Press, New York. 1998).Google Scholar
  21. Meheust, Y. (2002), Ecoulements dans les fractures ouvertes, Ph. D. Thesis, Univ. Paris VI and Ecole Normale Supérieure, Paris.Google Scholar
  22. Okubo, P. G. and Aki, K. (1987), Fractal geometry in the San Andreas fault system, J. Geophys. Res. 92, 345–355.CrossRefGoogle Scholar
  23. Palumbo, L., Benedetti, L., Bourles, D., Cinque, A., and Finkel, R. (2004), Slip history of the Magnola fault (Apennines, Central Italy) from 36 Cl surface exposure dating: Evidence for strong earthquakes over the Holocene, Earth Planet. Sci. Lett. 225, 163–176.CrossRefGoogle Scholar
  24. Parsons, T. (2008), Persistent earthquake clusters and gaps from slip on irregular faults, Nature Geosci. 1, 59–63, doi: 10.1038/ngeo.2007.36.CrossRefGoogle Scholar
  25. Peyrat, S., Olsen, K. B., and Madariaga, R. (2004), Which dynamic rupture parameters can be estimated from strong ground motion and geodetic data?, Pure Appl. Geophys. 161, 2155–2169, doi: 10.1007/s00024-004-2555-9.CrossRefGoogle Scholar
  26. Power, W. L., Tullis, T. E., and Weeks, J. D. (1988), Roughness and wear during brittle faulting, J. Geophys. Res. 93, 15,268–15,278.CrossRefGoogle Scholar
  27. Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., and Scholz, C. H. (1987), Roughness of natural fault surfaces, Geophys. Res. Lett. 14, 29–32.CrossRefGoogle Scholar
  28. Power, W. L. and Tullis, T. E. (1991), Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96, 415–424.CrossRefGoogle Scholar
  29. Power, W. L. and Durham, W. B. (1997), Topography of natural and artificial fractures in granitic rocks: Implications for studies of rock friction and fluid migration, Int. J. Rock Mech. Min. Sci. 34, 979–989.CrossRefGoogle Scholar
  30. Renard, F., Voisin, C., Marsan, D., and Schmittbuhl, J. (2006), High resolution 3D laser scanner measurements of a strike-slip fault quantify its morphological anisotropy at all scales, Geophys. Res. Lett. 33, L04305, doi: 10.1029/2005GL025038.CrossRefGoogle Scholar
  31. Rubin, A. M., Gillard, D., and Got, J.-L. (1999), Streaks of microearthquakes along creeping faults, Nature 400, 635–641.CrossRefGoogle Scholar
  32. Sagy A., Brodsky, E. E., and Axen, G. J. (2007), Evolution of fault-surface roughness with slip, Geology 35, 283–286.CrossRefGoogle Scholar
  33. Sagy, A. and Brodsky, E. E. (2009), Geometric and rheological asperities in an exposed fault zone, J. Geophys. Res. 114(B02301), doi: 10.1029/2008JB005701.CrossRefGoogle Scholar
  34. Schaff, D. P., Bokelmann, G. H. R., Beroza, G. C., Waldhauser, F., and Ellsworth, W. L. (2002), High-resolution image of Calaveras fault seismicity, J. Geophys. Res. 107(B9), 2186, doi: 10.1029/2001JB000633.CrossRefGoogle Scholar
  35. Schmittbuhl, J., Chambon, G., Hansen, A., and Bouchon, M. (2006), Are stress distributions along faults the signature of asperity squeeze?, Geophys. Res. Lett. 33, L13307, doi:10.1029/2006GL025952.CrossRefGoogle Scholar
  36. Schmittbuhl, J., Gentier, S., and Roux, R. (1993), Field measurements of the roughness of fault surfaces, Geophys. Res. Lett. 20, 639–641.CrossRefGoogle Scholar
  37. Schmittbuhl, J., Vilotte, J., and Roux, S. (1995a), Reliability of self-affine measurements, Phys. Rev. E 51, 131–147.CrossRefGoogle Scholar
  38. Schmittbuhl, J., Schmitt, F., and Scholz, C. (1995b), Scaling invariance of crack surfaces, J. Geophys. Res. 100, 5953–5973.CrossRefGoogle Scholar
  39. Schmittbuhl, J., Steyer, A., Jouniaux, L., and Toussaint, R. (2008), Fracture morphology and viscous transport, Int. J. Rock. Mech. Min. Sci. 45, 422–430.CrossRefGoogle Scholar
  40. Scholz, C. H., The Mechanics of Earthquake and Faulting (Cambridge Univ. Press, New York. 2002).Google Scholar
  41. Simonsen, I., Hansen, A., and News, O.M. (1998), Using wavelet transforms for Hurst exponent determination, Phys. Rev. E. 58, 2779–2787.CrossRefGoogle Scholar
  42. Simonsen, I., Vandembroucq, D., and Roux, S. (2000), Wave scattering from self-affine surfaces, Phys. Rev. E. 61, 5914–7.CrossRefGoogle Scholar
  43. Smith, R. B. (1977), Formation of folds, boudinage, and mullions in non-Newtonian materials, Geol. Soc. Amer. Bull. 88, 312–320.CrossRefGoogle Scholar
  44. Stein, M. L. (2002), Fast and exact simulation of fractional Brownian sufaces, J. Comput. Graph. Statist. 11, 587–599.CrossRefGoogle Scholar
  45. Thouvenot, F. (1998), The ML 5.3 Epagny (French Alps) earthquake of 1996 July 15: A long-awaited event on the Vuache Fault, Geophys. J. Int. 135, 876–892.CrossRefGoogle Scholar
  46. Twiss, R. J. and Moores, E. M., Structural Geology (W. H. Freeman, New York. 1992).Google Scholar
  47. Voisin, C., Campillo, M., Ionescu, I., Hassani, R., and Nguyen, Q.-L. (2002a), Process and signature of initiation on a finite fault system: A spectral approach, Geophys. J. Int. 148, 120–131.Google Scholar
  48. Voisin, C., Ionescu, I., and Campillo, M. (2002b), Crack growth resistance and dynamic rupture arrest under slip dependent friction, Phys. Earth Planet. Inter. 131, 279–294.CrossRefGoogle Scholar
  49. Voss, R.F., Scaling Phenomena in Disorder Systems (Plenum, New York. 1985).Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • Thibault Candela
    • 1
  • François Renard
    • 1
    • 2
  • Michel Bouchon
    • 3
  • Alexandre Brouste
    • 4
  • David Marsan
    • 5
  • Jean Schmittbuhl
    • 6
  • Christophe Voisin
    • 3
  1. 1.Laboratoire de Géodynamique des Chaînes Alpines, CNRS-OSUGUniversity Joseph Fourier-Grenoble IGrenobleFrance
  2. 2.Physics of Geological ProcessesUniversity of OsloOsloNorway
  3. 3.Laboratoire de Géophysique Interne et Tectonophysique, CNRS-OSUGUniversity Joseph Fourier-Grenoble IGrenobleFrance
  4. 4.Laboratoire Manceau de Mathématiques, CNRS, Université of Le MansUniversité du MaineLe MansFrance
  5. 5.Laboratoire de Géophysique Interne et Tectonophysique, CNRSUniversity of SavoieLe Bourget du LacFrance
  6. 6.UMR 7516Institut de Physique du Globe de StrasbourgStrasbourgFrance

Personalised recommendations