Advertisement

Nonplanar Faults: Mechanics of Slip and Off-fault Damage

  • James H. Dieterich
  • Deborah Elaine Smith
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Stress interactions and sliding characteristics of faults with random fractal waviness in a purely elastic medium differ both qualitatively and quantitatively from those of faults with planar surfaces. With nonplanar fault models, solutions for slip diverge as resolution of the fractal features increases, and the scaling of fault slip with fault rupture dimension becomes nonlinear. We show that the nonlinear scaling of slip and divergence of solutions arise because stresses from geometric interactions at irregularities along nonplanar faults grow with increasing slip and produce backstresses that progressively impede slip. However, in real materials with finite strength, yielding will halt the growth of the interaction stresses, which will profoundly affect slip of nonplanar faults. We infer that in the brittle seismogenic portion of the Earth’s crust, off-fault yielding occurs on pervasive secondary faults. Predicted rates of stress relaxation with distance from major faults with random fractal roughness follow a power-law relationship that is consistent with reported clustering of background seismicity up to 15 kilometers from faults.

Key words

Faults fault mechanics seismicity fault roughness damage fractal fault slip 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. (2004), Rupture with dynamically determined breakdown displacement, Bull. Seismol. Soc. Am. 94, 769–775.CrossRefGoogle Scholar
  2. Andrews, D. (2005), Rupture dynamics with energy loss outside the slip zone, J. Geophys. Res.-Sol. Earth 110, B01307.CrossRefGoogle Scholar
  3. Ben-Zion, Y. and Sammis, C. G. (2003), Characterization of fault zones, Pure Appl. Geophys. 160, 677–715.CrossRefGoogle Scholar
  4. Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I., Cowie, P., and Berkowitz, B. (2001), Scaling of fracture systems in geological media, Rev. Geophys. 39, 347–383..CrossRefGoogle Scholar
  5. Brown, S. R. and Scholz, C. H. (1985), Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res.-Sol. Earth Planets 90, 2575–2582.Google Scholar
  6. Caine, J., Evans, J., and Forster, C. (1996), Fault zone architecture and permeability structure, Geology 24, 1025–1028.CrossRefGoogle Scholar
  7. Candela, T., Renard, F., Bouchon, M., Marsan, D., Schmittbuhl, J., and Voisin, C. (2009), Characterization of fault roughness at various scales: Implications of three-dimensional high resolution topography measurement, Tectonophysics.Google Scholar
  8. Chester, F., Field guide to the Punchbowl Fault Zone at Devil’s Punchbowl Los Angeles County Park, California (Texas A&M University, Texas 1999).Google Scholar
  9. Chester, F. and Chester, J. (1998), Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California, Tectonophysics 295, 199–221.CrossRefGoogle Scholar
  10. Chester , et al. (1996).Google Scholar
  11. Chester, F., Evans, J., and Biegel, R. (1993), Internal structure and weakening mechanisms of the San-Andreas Fault, J. Geophys. Res.-Sol. Earth 98, 771–786.CrossRefGoogle Scholar
  12. Chester, F. M. and Chester, J. S. (2000), Stress and deformation along wavy frictional faults, J. Geophys. Res.-Sol. Earth 105, 23421–23430.CrossRefGoogle Scholar
  13. Dieterich, J. H. (1992), Earthquake nucleation on faults with rate-dependent and state-dependent strength, Tectonophysics 211, 115–134.CrossRefGoogle Scholar
  14. Dieterich, J. H., Richards-Dinger, K., and Smith, D. E. (2008), Large-scale simulations of fault system seismicity. Paper presented at 6th ACES International Workshop on Earthquake Simulation, Cairns, Australia, May 11–16, 2008.Google Scholar
  15. Duan, B. and Oglesby, D. D. (2005), Multicycle dynamics of nonplanar strike-slip faults, J. Geophys. Res. 110, B03304.CrossRefGoogle Scholar
  16. Duan, B. and Oglesby, D. D. (2006), Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike slip earthquakes, J. Geophys. Res. 111, B05309.CrossRefGoogle Scholar
  17. Fournier, A., Fussell, D., and Carpenter, L. (1982), Computer rendering of stochastic-models, Communication of the ACM 25, 371–384.CrossRefGoogle Scholar
  18. Hauksson, E. (2009), Spatial Separation of Large Earthquakes, Aftershocks, and Background Seismicity: Analysis of Interseismic and Coseismic Seismicity Patterns in Southern California, Pure Appl. Geophys., Special Frank Evison Issue, in press.Google Scholar
  19. King, G. C. P. (1983), The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems — The geometrical origin of the b-value, Pure Appl. Geophys. 121, 761–815.CrossRefGoogle Scholar
  20. King, G. C. P. (1986), Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure, Pure Appl. Geophys. 124, 567–585.CrossRefGoogle Scholar
  21. King, G. C. P. and Nabélek, J. (1985), Role of fault bends in the initiation and termination of earthquake rupture, Science 228, 984–987.CrossRefGoogle Scholar
  22. Lockner, D., Byerlee, J., Kuksenko, V., Ponomarev, A., and Sidorin, A. (1991), Quasi-static fault growth and shear fracture energy in granite, Nature 350, 39–42.CrossRefGoogle Scholar
  23. Lyakhosvsky, V., Ben-Zion, Y., and Agnon, A. (1997), Distributed damage, faulting, and friction, J. Geophys. Res. 102, 27635–27649.CrossRefGoogle Scholar
  24. Lyakhovsky, V. (2001), Scaling of fracture length and distributed damage, Geophys. J. Internatil. 144, 114–122.CrossRefGoogle Scholar
  25. Martel, S., Pollard, D., and Segall, P. (1988), Development of simple strike-slip fault zones, Mount Abbot quadrangle, Sierra-Nevada, California, Geol. Soc. Am. Bull. 100, 1451–1465.CrossRefGoogle Scholar
  26. Nielsen, S. B. and Knopoff, L. (1998), The equivalent strength of geometrical barriers to earthquakes, J. Geophys. Res.-Sol. Earth 103, 9953–9965.CrossRefGoogle Scholar
  27. Okubo, P. G. and Aki, K. (1987), Fractal geometry in the San-Andreas fault system, J. Geophys. Res.-Sol. Earth Planets 92, 345–355.CrossRefGoogle Scholar
  28. Peitgen, H., Jürgens, H., and Saupe, D., Chaos and Fractals: New Frontiers of Science (Springer-Verlag, New York 1992).Google Scholar
  29. Power, W. L. and Tullis, T. E. (1991), Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96, 415–424.CrossRefGoogle Scholar
  30. Powers, P. M. and Jordan, T. H. (2008), Distribution of seismicity across strike-slip faults in California, EOS Trans. AGU, 89, Fall Meet. Suppl., Abstract S21B–1831.Google Scholar
  31. Reches, Z. and Lockner, D. (1994), Nucleation and growth of faults in brittle rocks, J. Geophys. Res.-Sol. Earth 99, 18159–18173.CrossRefGoogle Scholar
  32. Rice, J., Sammis, C., and Parsons, R. (2005), Off-fault secondary failure induced by a dynamic slip pulse, Bull. Seismol. Soc. Am. 95, 109–134.CrossRefGoogle Scholar
  33. Sagy, A., Brodsky, E., and Axen, G. (2007), Evolution of fault-surface roughness with slip, Geology, 35, 283–286.CrossRefGoogle Scholar
  34. Saucier, F. E., Humphreys, E., and Axen, G. (2007), Evolution of fault-surface roughness with slip, Geology, 35, 283–286.CrossRefGoogle Scholar
  35. Saucier, F. E., Humphreys, E., and Weldon, R. (1992), Stress near geometrically complex strike-slip faults — Application to the San-Andreas Fault at Cajon Pass, Southern California, J. Geophys. Res.-Sol. Earth 97, 5081–5094.CrossRefGoogle Scholar
  36. Scholz, C. H. and Aviles, C. A. (Eds.), The Fractal Geometry of Faults and Faulting, 147–156 pp. (Am. Geophys. Union, Washington D.C. 1986).Google Scholar
  37. Smith, D. E. and Dieterich, J. H. (2008), Rate-state modeling of stress relaxation in geometrically complex systems. Paper presented at Seismol. Soc. Am. Annual Meeting, Santa Fe, NM, April 16–18, 2008.Google Scholar
  38. Starr, A. (1928), Slip in a crystal and rupture in a solid due to shear, Proc. Cambridge Philosoph. Soc. 24, 489–500.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel 2009

Authors and Affiliations

  • James H. Dieterich
    • 1
  • Deborah Elaine Smith
    • 1
  1. 1.Department of Earth SciencesUniversity of California RiversideRiversideUSA

Personalised recommendations