Skip to main content

C11 Cytotoxic drugs

  • Chapter
  • First Online:
Principles of Immunopharmacology

Abstract

CYTOTOXIC immunosuppressive agents have a longstanding important role in pharmacological immunosuppression. Azathioprine was among the first immunosuppressive drugs used in organ transplantation, and further development in this field was landmarked by the introduction of ALKYLATING AGENTS (i.e., cyclophosphamide) and ANTIMETABOLITES (i.e., fludarabine, METHOTREXATE and mycophenolic acid) in therapeutic regimens for the prevention of graft rejection (see chapter C12) and the treatment of AUTOIMMUNE DISEASES (see chapter C15) because of their well-documented lymphocytolytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barshes NR, Goodpastor SE, Goss JA. Pharmacologic immunosuppression. Front Biosci 2004; 9: 411–420

    Article  PubMed  CAS  Google Scholar 

  2. Germani G, Pleguezuelo M, Villamil F, Vaghjiani S, Tsochatzis E, Andreana L, Burroughs AK. Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am J Transplant 2009; 9: 1725–1731

    Article  PubMed  CAS  Google Scholar 

  3. Mueller XM Drug immunosuppression therapy for adult heart transplantation. Part 1: immune response to allograft and mechanism of action of immunosuppressants. Ann Thorac Surg 2004; 77: 354–362

    Google Scholar 

  4. Sauer H, Hantke U, Wilmanns W. Azathioprine lymphocytotoxicity. Potentially lethal damage by its imidazole derivatives. Arzneimittelforschung 1988; 38: 820–884

    CAS  Google Scholar 

  5. Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004; 26: 186–191

    Article  PubMed  CAS  Google Scholar 

  6. El-Azhary RA. Azathioprine: current status and future considerations. Int J Dermatol 2003; 42: 335–341

    Article  PubMed  CAS  Google Scholar 

  7. Gold R, Schneider-Gold C. Current and future standards in treatment of myasthenia gravis. Neurotherapeutics 2008; 5: 535–541

    Article  PubMed  CAS  Google Scholar 

  8. de Jong DJ, Goullet M, Naber TH Side effects of azathioprine in patients with Crohn’s disease. Eur J Gastroenterol Hepatol 2004; 16: 207–212

    Article  PubMed  Google Scholar 

  9. Marcen R, Pascual J, Tato AM, Teruel JL, Villafruela JJ, Fernandez M, Tenorio M, Burgos FJ, Ortuno J. Influence of immunosuppression on the prevalence of cancer after kidney transplantation. Transplant Proc 2003; 35: 1714–1716

    Article  PubMed  CAS  Google Scholar 

  10. Hengstler JG, Hengst A, Fuchs J, Tanner B, Pohl J, Oesch F. Induction of DNA crosslinks and DNA strand lesions by cyclophosphamide after activation by cytochrome P450 2B1. Mutat Res 1997; 373: 215–223

    PubMed  CAS  Google Scholar 

  11. Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 2000; 47: 63–83

    Article  PubMed  CAS  Google Scholar 

  12. Pette M, Gold R, Pette DF, Hartung HP, Toyka KV. Mafosfamide induces DNA fragmentation and APOPTOSIS in human T-lymphocytes. A possible mechanism of its immunosuppressive action. Immunopharmacology 1995; 30: 59–69

    CAS  Google Scholar 

  13. Sulkowska M, Sulkowski S, Skrzydlewska E, Farbiszewski R. Cyclophosphamide-induced generation of reactive oxygen species. Comparison with morphological changes in type II alveolar epithelial cells and lung capillaries. Exp Toxicol Pathol 1998; 50: 209–220

    CAS  Google Scholar 

  14. Alan V, Boddy AV, Yule SM. Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 2000; 38: 291–304

    Article  Google Scholar 

  15. Rinaldi L, Perini P, Calabrese M, Gallo P. Cyclophosphamide as second-line therapy in multiple sclerosis: benefits and risks. Neurol Sci 2009; 30 Suppl 2: S171–S173

    Article  PubMed  Google Scholar 

  16. Esdaile JM. How to manage patients with lupus nephritis. Best Practice Res Clin Rheumatol 2002; 16: 195–210

    Article  Google Scholar 

  17. Mosca M, Ruiz-Irastorza G, Khamashta MA, Hughes GRV. Treatment of systemic lupus erythematosus. Int Immunopharmacol 2001; 1: 1065–1075

    Article  PubMed  CAS  Google Scholar 

  18. Langford CA. Management of systemic vasculitis. Best Practice Res Clin Rheumatol 2001; 15: 281–297

    Article  CAS  Google Scholar 

  19. Huang Z, Roy P, Waxman DJ. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 2000; 59: 961–972

    Article  PubMed  CAS  Google Scholar 

  20. Jinno H, Tanaka-Kagawa T, Ohno A, Makino Y, Matsushima E, Hanioka N, Ando M. Functional characterization of cytochrome P450 2B6 allelic variants. Drug Metab Dispos 2003; 31: 398–403

    Article  PubMed  CAS  Google Scholar 

  21. Giorgianni F, Bridson PK, Sorrentino BP, Pohl J, Blakley RL. Inactivation of aldophosphamide by human aldehyde dehydrogenase isozyme 3. Biochem Pharmacol 2000; 60: 325–338

    Article  PubMed  CAS  Google Scholar 

  22. Low SK, Kiyotani K, Mushiroda T, Daigo Y, Nakamura Y, Zembutsu H. Association study of genetic polymorphism in ABCC4 with cyclophosphamide-induced adverse drug reactions in breast cancer patients. J Hum Genet 2009; 54: 564–571

    Article  PubMed  CAS  Google Scholar 

  23. Montgomery JA, Hewson K. Nucleosides of 2-fluoroadenine. J Med Chem 1969; 12: 498–504

    Article  PubMed  CAS  Google Scholar 

  24. Molina-Arcas M, Bellosillo B, Casado FJ, Montserrat E, Gil J, Colomer D, Pastor-Anglada M. Fludarabine uptake mechanisms in B-cell chronic lymphocytic leukemia. Blood 2003; 101: 2328–2334

    Article  PubMed  CAS  Google Scholar 

  25. Gandhi V, Plunkett W. Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 2002; 41: 93–103

    Article  PubMed  CAS  Google Scholar 

  26. Illei GG, Yarboro CH, Kuroiwa T, Schlimgen R, Austin HA, Tisdale JF, Chitkara P, Fleisher T, Klippel JH, Balow JE, Boumpas DT. Long-term effects of combination treatment with fludarabine and low-dose pulse cyclophosphamide in patients with lupus nephritis. Rheumatology 2007; 46: 952–956

    Article  PubMed  CAS  Google Scholar 

  27. Takada K, Danning CL, Kuroiwa T, Schlimgen R, Tassiulas IO, Davis JC Jr, Yarboro CH, Fleisher TA, Boumpas DT, Illei GG. Lymphocyte depletion with fludarabine in patients with psoriatic arthritis: clinical and immunological effects. Ann Rheum Dis 2003; 62: 1112–1115

    Article  PubMed  CAS  Google Scholar 

  28. Branagan TH. Current treatments of chronic immunemediated demyelinating polyneuropathies. Muscle Nerve 2009; 39: 563–578

    Article  Google Scholar 

  29. Davis JC Jr, Fessler BJ, Tassiulas IO, McInnes IB, Yarboro CH, Pillemer S, Wilder R, Fleisher TA, Klippel JH, Boumpas DT. High dose versus low dose fludarabine in the treatment of patients with severe refractory rheumatoid arthritis. J Rheumatol 1998; 25: 1694–1704

    PubMed  CAS  Google Scholar 

  30. Adams EM, Pucino F, Yarboro C, Hicks JE, Thornton B, McGarvey C, Sonies BC, Bartlett ML, Villalba ML, Fleisher T, Plotz PH. A pilot study: use of fludarabine for refractory dermatomyositis and polymyositis, and examination of endpoint measures. J Rheumatol 1999; 26: 352–360

    PubMed  CAS  Google Scholar 

  31. Biasi D, Caramaschi P, Carletto A, Bambara LM. Unsuccessful treatment with fludarabine in four cases of refractory rheumatoid arthritis. Clin Rheumatol 2000; 19: 442–444

    Article  PubMed  CAS  Google Scholar 

  32. Bashey A. Immunosuppression with limited toxicity: the characteristics of nucleoside analogs and antilymphocyte antibodies used in non-myeloablative haematopoietic cell transplantation. Cancer Treat Res 2002; 110: 39–49

    Article  PubMed  Google Scholar 

  33. Hoffman PC. Immune hemolytic anemia – selected topics. Hematol Am Soc Hematol Educ Program 2009: 80–86

    Google Scholar 

  34. Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, Hattinger CM, Manara MC, Pasello M, Scotlandi K, Picci P. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 2004; 15: 151–160

    Article  PubMed  CAS  Google Scholar 

  35. Fraser AG. Methotrexate: first-line or second-line immunomodulator? Eur J Gastroenterol Hepatol 2003; 15: 225–231

    Article  PubMed  CAS  Google Scholar 

  36. Grim J, Chládek J, Martínková J. Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 2003; 42: 139–151

    Article  PubMed  CAS  Google Scholar 

  37. Zhao R, Goldman ID. Resistance to antifolates. Oncogene 2003; 22: 7431–7457

    CAS  Google Scholar 

  38. van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 2002; 13: 595–603

    PubMed  Google Scholar 

  39. Warren RB, Chalmers RJ, Griffiths CE, Menter A. Methotrexate for psoriasis in the era of biological therapy. Clin Exp Dermatol 2008; 33: 551–554

    Article  PubMed  CAS  Google Scholar 

  40. Smolen JS, Landewé R, Breedveld FC, Dougados M, Emery P, Gaujoux-Viala C, Gorter S, Knevel R, Nam J, Schoels M, Aletaha D, Buch M, Gossec L, Huizinga T, Bijlsma JW, Burmester G, Combe B,Cutolo M, Gabay C, Gomez-Reino J, Kouloumas M, Kvien TK, Martin-Mola E, McInnes I, Pavelka K, van Riel P, Scholte M, Scott DL, Sokka T, Valesini G, van Vollenhoven R, Winthrop KL, Wong J, Zink A, van der Heijde D. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann Rheum Dis 2010; 69: 964–975

    Article  PubMed  CAS  Google Scholar 

  41. Kahn P. Juvenile idiopathic arthritis – current and future therapies. Bull NYU Hosp Jt Dis 2009; 67: 291–302

    PubMed  Google Scholar 

  42. Lee YH, Song GG. Associations between the C677T and A1298C polymorphisms of MTHFR and the efficacy and toxicity of methotrexate in rheumatoid arthritis: a meta-analysis. Clin Drug Investig 2010; 30: 101–108

    Article  PubMed  CAS  Google Scholar 

  43. Borchers AT, Keen CL, Cheema GS, Gershwin ME. The use of methotrexate in rheumatoid arthritis. Semin Arthritis Rheum 2004; 34: 465–483

    Article  PubMed  CAS  Google Scholar 

  44. Ruperto N, Murray KJ, Gerloni V, Wulffraat N, de Oliveira SK, Falcini F, Dolezalova P, Alessio M, Burgos-Vargas R, Corona F, Vesely R, Foster H, Davidson J, Zulian F, Asplin L, Baildam E, Consuegra JG,Ozdogan H, Saurenmann R, Joos R, Pistorio A, Woo P, Martini A. A randomized trial of parenteral methotrexate comparing an intermediate dose with a higher dose in children with juvenile idiopathic arthritis who failed to respond to standard doses of methotrexate. Arthritis Rheum 2004; 50: 2191–2201

    Article  PubMed  CAS  Google Scholar 

  45. Smak Gregoor PJ, van Gelder T, Weimar W. Mycophenolate mofetil, Cellcept, a new immunosuppressive drug with great potential in internal medicine. Neth J Med 2000; 57: 233–246

    Google Scholar 

  46. Gabardi S, Tran JL, Clarkson MR. Enteric-coated mycophenolate sodium. Ann Pharmacother 2003; 37: 1685–1693

    Article  PubMed  CAS  Google Scholar 

  47. Srinivas TR, Kaplan B, Meier-Kriesche HU. Mycophenolate mofetil in solid-organ transplantation. Expert Opin Pharmacother 2003; 4: 2325–2345

    Article  PubMed  CAS  Google Scholar 

  48. Villarroel MC, Hidalgo M, Jimeno A. Mycophenolate mofetil: An update. Drugs Today 2009; 45: 521–532

    PubMed  Google Scholar 

  49. Lui SL, Chan LY, Zhang XH, Zhu W, Chan TM, Fung PC, Lai KN. Effect of mycophenolate mofetil on nitric oxide production and inducible nitric oxide synthase gene expression during renal ischaemia-reperfusion injury. Nephrol Dial Transplant 2001; 16: 1577–1582

    Article  PubMed  CAS  Google Scholar 

  50. Kelly P, Kahan BD. Review: metabolism of immunosuppressant drugs. Curr Drug Metab 2002; 3: 275–287

    Article  PubMed  CAS  Google Scholar 

  51. Del Tacca M. Prospects for personalized immunosuppression: pharmacologic tools – a review. Transplant Proc 2004; 36: 687–689

    Article  PubMed  Google Scholar 

  52. Holt DW. Monitoring mycophenolic acid. Ann Clin Biochem 2002; 39: 173–183

    Article  PubMed  CAS  Google Scholar 

  53. Hale MD, Nicholls AJ, Bullingham RE, Hene R, Hoitsma A, Squifflet JP, Weimar W, Vanrenterghem Y, Van de Woude FJ, Verpooten GA. The pharmacokineticpharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998; 64: 672–683

    Article  PubMed  CAS  Google Scholar 

  54. Mackenzie PI. Identification of uridine diphosphate glucuronosyl-transferases involved in the metabolism and clearance of mycophenolic acid. Ther Drug Monit 2000; 22: 10–13

    Article  PubMed  CAS  Google Scholar 

  55. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 2000; 47: 215–245

    Article  PubMed  CAS  Google Scholar 

  56. Giessing M, Fuller TF, Tuellmann M, Slowinski T, Budde K, Liefeldt L. Steroid- and calcineurin inhibitor free immunosuppression in kidney transplantation: state of the art and future developments.World J Urol 2007; 25: 325–332

    Google Scholar 

  57. Koukoulaki M, Goumenos DS. The accumulated experience with the use of mycophenolate mofetil in primary glomerulonephritis. Expert Opin Investig Drugs 2010; 19: 673–687

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano Danesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Birkhäuser Basel

About this chapter

Cite this chapter

Danesi, R., Bocci, G., Di Paolo, A., Parnham, M.J., Tacca, M.D. (2011). C11 Cytotoxic drugs. In: Nijkamp, F., Parnham, M. (eds) Principles of Immunopharmacology. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0136-8_26

Download citation

Publish with us

Policies and ethics