Skip to main content

Trastuzumab Resistance in Breast Cancer

  • Chapter
  • First Online:
Drugs for HER-2-positive Breast Cancer

Abstract

The amplification and expression of ERBB2 have been linked with prognosis and response to therapy with the anti-HER-2-humanised monoclonal antibody, trastuzumab, in patients with advanced metastatic breast cancer. However, one of the major clinical problems encountered with trastuzumab treatment is that metastatic breast cancer patients, who initially responded to trastuzumab, showed disease progression within 1 year from treatment initiation. Several studies have already reported or speculated on potential mechanisms of resistance to trastuzumab. Despite these important leads, there is/are no biomarker(s) that can reliably predict lack of benefit from trastuzumab, which in turn can be used for subsequent clinical trial development and/or individual therapeutic decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  CAS  PubMed  Google Scholar 

  2. Ramsauer VP, Carraway CA, Salas PJ, Carraway KL (2003) Muc4/ sialomucin complex, the intramembrane ErbB2 ligand, translocates ErbB2 to the apical surface in polarized epithelial cells. J Biol Chem 278:30142–30147

    Article  CAS  PubMed  Google Scholar 

  3. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF 3rd, Hynes NE (2003) The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 100:8933–8938

    Article  CAS  PubMed  Google Scholar 

  4. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F et al (2004) Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6:251–261

    Google Scholar 

  5. Klijn JG, Berns PM, Schmitz PI, Foekens JA (1992) The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev 13:3–17

    CAS  PubMed  Google Scholar 

  6. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  7. Owens MA, Horten BC, Da Silva MM (2004) HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 5:63–69

    Article  CAS  PubMed  Google Scholar 

  8. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  9. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  10. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, Pusztai L, Green MC, Arun BK, Giordano SH et al (2005) Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 23:3676–3685

    Google Scholar 

  11. Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232:123–138

    Article  CAS  PubMed  Google Scholar 

  12. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6:117–127

    Article  CAS  PubMed  Google Scholar 

  13. Cooley S, Burns LJ, Repka T, Miller JS (1999) Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp Hematol 27:1533–1541

    Article  CAS  PubMed  Google Scholar 

  14. Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK (2002) Tumour biology: Herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280

    Article  CAS  PubMed  Google Scholar 

  15. Klos KS, Zhou X, Lee S, Zhang L, Yang W, Nagata Y, Yu D (2003) Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone. Cancer 98:1377–1385

    Article  CAS  PubMed  Google Scholar 

  16. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L, Sklarin NT, Seidman AD, Hudis CA, Moore J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14:737–744

    CAS  PubMed  Google Scholar 

  17. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V et al (2001) Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19:2587–2595

    CAS  PubMed  Google Scholar 

  18. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  19. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L, Cristofanilli M, Arun B, Esmaeli B, Fritsche HA et al (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 20:1800–1808

    Article  CAS  PubMed  Google Scholar 

  20. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 3:269–280

    Article  CAS  PubMed  Google Scholar 

  21. Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, Carraway KL (2002) Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99:783–791

    Article  CAS  PubMed  Google Scholar 

  22. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, Jovin TM (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65:473–482

    CAS  PubMed  Google Scholar 

  23. Carraway KL, Price-Schiavi SA, Komatsu M, Jepson S, Perez A, Carraway CA (2001) Muc4/sialomucin complex in the mammary gland and breast cancer. J Mammary Gland Biol Neoplasia 6:323–337

    Article  CAS  PubMed  Google Scholar 

  24. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL (2002) Herceptin-induced inhibition of phosphatidylinositol- 3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141

    CAS  PubMed  Google Scholar 

  25. Chan CT, Metz MZ, Kane SE (2005) Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 91:187–201

    Article  CAS  PubMed  Google Scholar 

  26. Lin YZ, Clinton GM (1991) A soluble protein related to the HER-2 proto-oncogene product is released from human breast carcinoma cells. Oncogene 6:639–643

    CAS  PubMed  Google Scholar 

  27. Yamauchi H, O’Neill A, Gelman R, Carney W, Tenney DY, Hosch S, Hayes DF (1997) Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 15:2518–2525

    CAS  PubMed  Google Scholar 

  28. Fornier MN, Seidman AD, Schwartz MK, Ghani F, Thiel R, Norton L, Hudis C (2005) Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry and fluorescence in situ hybridization and with response rate. Ann Oncol 16:234–239

    Article  CAS  PubMed  Google Scholar 

  29. Ali SM, Esteva FJ, Fornier M, Gligorov J, Harris L, Kostler WJ, Luftner D, Pichon MF, Tse C, Lipton A (2006) Serum HER-2/neu change predicts clinical outcome to trastuzumab-based therapy. J Clin Oncol 24(Suppl):500

    Google Scholar 

  30. Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, Arribas J (2006) Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J 25:3234–3244

    Article  CAS  PubMed  Google Scholar 

  31. Motoyama AB, Hynes NE, Lane HA (2002) The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced byt he availability of epidermal growth factor-related peptides. Cancer Res 62:3151–3158

    CAS  PubMed  Google Scholar 

  32. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K et al (2002) Targeting ligand activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137

    Article  CAS  PubMed  Google Scholar 

  33. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to rastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–4919

    Article  CAS  PubMed  Google Scholar 

  34. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854

    Article  CAS  PubMed  Google Scholar 

  35. Sangai T, Fujimoto H, Miyamoto S, Maeda H, Nakamura M, Ishii G, Nagai K, Nagashima T, Miyazaki M, Ochiai A et al (2008) Roles of osteoclasts and bone-derived IGFs in the survival and growth of human breast cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Clin Exp Metastasis 25:401–410

    Google Scholar 

  36. Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY (2006) Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 66:10100–10111

    Article  CAS  PubMed  Google Scholar 

  37. Jones HE, Goddard L, Gee JM, Hiscox S, Rubini M, Barrow D, Knowlden JM, Williams S, Wakeling AE, Nicholson RI et al (2004). Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814

    Google Scholar 

  38. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ (2005) Insulin like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resi stance of breast cancer cells. Cancer Res 65:11118–11128

    Article  CAS  PubMed  Google Scholar 

  39. Balana ME, Labriola L, Salatino M, Movsichoff F, Peters G, Charreau EH, Elizalde PV (2001) Activation of ErbB-2 via a hierarchical interaction between ErbB-2 and type I insulin-like growth factor receptor in mammary tumor cells. Oncogene 20:34–47

    Article  CAS  PubMed  Google Scholar 

  40. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857

    Article  CAS  PubMed  Google Scholar 

  41. Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, Shiry L, Pegram M, Leyland-Jones B (2006) Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor-2- overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res 66:7245–7252

    Article  CAS  PubMed  Google Scholar 

  42. Nahta R, Hung MC, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 4:2343–2346

    Article  Google Scholar 

  43. Le XF, Claret FX, Lammayot A, Tian L, Deshpande D, LaPushin R, Tari AM, Bast RC Jr (2003) The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem 278:23441–23450

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fortunato Ciardiello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel

About this chapter

Cite this chapter

Morgillo, F., Orditura, M., Troiani, T., Martinelli, E., De Vita, F., Ciardiello, F. (2011). Trastuzumab Resistance in Breast Cancer. In: Sibilia, M., Zielinski, C., Bartsch, R., Grunt, T. (eds) Drugs for HER-2-positive Breast Cancer. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-0346-0094-1_3

Download citation

Publish with us

Policies and ethics