Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ying LW, Bai DW, Ao Z, Xin XS, and Ping ZJ. Role of exosomes in central nervous system diseases. Frontiers in Molecular Neuroscience, 2019,12:240. DOI: 10.3389/fn-mol.2019.00240 115

    Article  Google Scholar 

  2. Serrano-Pozo A, Frosch MP, Masliah E, and Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2011, 1(1):a006189. DOI: 10.1101/cshperspect.a006189 115

    Article  Google Scholar 

  3. Sardi F, Fassina L, Venturini L, Inguscio M, Guerriero F, Rolfo E, et al. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmunity Reviews, 2011, 11(2):149–53. DOI: 10.1016/j.autrev.2011.09.005 115

    Article  Google Scholar 

  4. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, et al. Alzheimer’s disease β-amyloid peptides are released in association with exosomes. Proc. of the National Academy of Sciences, 2006, 103(30):11172–7. DOI: 10.1073/pnas.0603838103 115

    Article  Google Scholar 

  5. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR- 4) potential mechanism of apoptosis induction in Alzheimer disease (AD). Journal of Biological Chemistry, 2012, 287(25):21384–95. DOI: 10.1074/jbc.M112.340513 115

    Article  Google Scholar 

  6. Bulloj A, Leal MC, Xu H, Castaño EM, and Morelli L. Insulin-degrading enzyme sorting in exosomes: A secretory pathway for a key brain amyloid-β degrading protease. Journal of Alzheimer’s Disease, 2010, 19(1):79–95. DOI: 10.3233/jad-2010-1206 115

    Article  Google Scholar 

  7. Yuyama K, Sun H, Mitsutake S, and Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. The Journal of biological chemistry, 2012, 287(14):10977-89. DOI: 10.1074/jbc.m111.324616 115, 116, 117

    Article  Google Scholar 

  8. Dinkins MB, Dasgupta S, Wang G, Zhu G, and Bieberich E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiology of Aging, 2014, 35(8):1792–800. DOI:10.1016/j.neurobiolaging.2014.02.012 115

    Article  Google Scholar 

  9. Lees AJ, Hardy J, and ReveszT. Parkinson’s disease. Lancet, 2009, 373(9680):2055–66. DOI: 10.1016/s0140-6736(09)60492-x 117

    Article  Google Scholar 

  10. Braak H, Rüb U, Gai WP, and Del Tredici K. Idiopathic Parkinson’s disease: Possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission, (Vienna, Austria, 1996), 2003, 110(5):517–36. DOI: 10.1007/s00702-002-0808-2 117

    Article  Google Scholar 

  11. Del Tredici K and Braak H. Review: Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and applied neurobiology, 2016, 42(1):33–50. DOI: 10.1111/nan.12298 117

    Article  Google Scholar 

  12. Olanow CW and Brundin P. Parkinson’s disease and alpha synuclein: Is Parkinson’s disease a prion-like disorder? Movement Disorders: Official Journal of the Movement Disorder Society, 2013, 28(1):31–40. DOI: 10.1002/mds.25373 117

    Article  Google Scholar 

  13. Lee HJ, Patel S, and Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2005, 25(25):6016–24. DOI: 10.1523/JNEUROSCI.0692-05.2005 118

    Article  Google Scholar 

  14. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, et al. Chaperone-mediated autophagy markers in Parkinson disease brains. Archives of Neurology, 2010, 67(12):1464–72. DOI: 10.1001/archneurol.2010.198 118

    Article  Google Scholar 

  15. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. NeurobiologyDisease, 2011, 42(3):360–7. DOI: 10.1016/j.nbd.2011.01.029 116, 117, 118

    Google Scholar 

  16. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking a-synuclein. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2002, 22(20):8797–807. DOI: 10.1523/jneurosci.22-20-08797.2002 118

    Article  Google Scholar 

  17. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, and Sharon R. Alpha-synuclein and polyunsaturated fatty acids promote clathrin-mediated endocyto- sis and synaptic vesicle recycling. Traffic, 2009, 10(2):218–34. DOI: 10.1111/j.1600-0854.2008.00853.x 118

    Article  Google Scholar 

  18. Alegre-Abarrategui J and Wade-Martins R. Parkinson disease, LRRK2 and the endocytic-autophagic pathway. Autophagy, 2009, 5(8):1208–10. DOI: 10.4161/auto.5.8.9894 118

    Article  Google Scholar 

  19. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science, 2003, 300(5619):636–40. DOI: 10.1126/science.1082324 118

    Article  Google Scholar 

  20. Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, et al. Retromer disruption promotes amyloidogenic APP processing. Neurobiology Disease, 2011, 43(2):338–45. DOI: 10.1016/j.nbd.2011.04.002 118

    Article  Google Scholar 

  21. Chang C, Lang H, Geng N, WangJ, Li N, and Wang X. Exosomes of BV-2 cells induced by alpha-synuclein: Important mediator of neurodegeneration in PD. Neuroscience Letters, 2013, 548:190–5. DOI: 10.1016/j.neulet.2013.06.009 118

    Article  Google Scholar 

  22. Dobson R and Giovannoni G. Multiple sclerosis—a review. European Journal of Neurology, 2019, 26(1):27-40. DOI: 10.1111/ene.13819 118

    Article  Google Scholar 

  23. Saenz-Cuesta M, Irizar H, Castillo-Triviño T, Muñoz-Culla M, Osorio-Querejeta I, Prada A, et al. Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomarkers in Medicine, 2014, 8(5):653-61. DOI: 10.2217/bmm.14.9 118

    Article  Google Scholar 

  24. Bakhti M, Winter C, and Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. The Journal of Biological Chemistry, 2011, 286(1):787-96. DOI: 10.1074/jbc.m110.190009 116, 117, 118

    Article  Google Scholar 

  25. Frohlich D, Kuo WP, Frühbeis C, Sun JJ, Zehendner CM, Luhmann HJ, et al. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2014, 369(1652). DOI: 10.1098/rstb.2013.0510 118

    Google Scholar 

  26. Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biology, 2013, 11(7):e1001604. DOI: 10.1371/journal.pbio.1001604 118

    Article  Google Scholar 

  27. Wang S, Cesca F, Loers G, Schweizer M, Buck F, Benfenati F, et al. Synapsin I is an oligomannose-carrying glycoprotein, acts as an oligomannose-binding lectin, and promotes neurite outgrowth and neuronal survival when released via glia-derived exosomes. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2011, 31(20):7275-90. DOI: 10.1523/jneurosci.6476-10.2011 119

    Article  Google Scholar 

  28. Kleinewietfeld M and Hafler DA. Regulatory T cells in autoimmune neuroinflammation. Immunological Reviews, 2014, 259(1):231–44. DOI: 10.1111/imr.12169 119

    Article  Google Scholar 

  29. Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C, et al. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nature Communications, 2018, 9(1):17. DOI: 10.1038/s41467-017-02406-2 116, 117, 119

    Article  Google Scholar 

  30. Baldwin KJ and Correll CM. Prion Disease. Seminars in Neurology, 2019, 39(4):428-39. DOI: 10.1055/s-0039-1687841 119

    Article  Google Scholar 

  31. Hartmann A, Muth C, Dabrowski O, Krasemann S, and Glatzel M. Exosomes and the Prion Protein: More than one truth. Frontiers in Neuroscience, 2017, 11:194. DOI:10.3389/fnins.2017.00194 119

    Article  Google Scholar 

  32. Cervenakova L, Saá P, Yakovleva O, Vasilyeva I, de Castro J, Brown P, et al. Are prions transported by plasma exosomes? Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis, 2016, 55(1):70-83. DOI: 10.1016/j.transci.2016.07.013 119

    Google Scholar 

  33. Cheng L, Zhao W, and Hill AF. Exosomes and their role in the intercellular trafficking of normal and disease associated prion proteins. Molecular Aspects of Medicine, 2018, 60:62–8. DOI: 10.1016/j.mam.2017.11.011 119

    Article  Google Scholar 

  34. Heisler FF, Pechmann Y, Wieser I, Altmeppen HC, Veenendaal L, Muhia M, et al. Muskelin coordinates PrP(C) lysosome versus exosome targeting and impacts prion disease progression. Neuron, 2018, 99(6):1155–69.e9. DOI: 10.1016/j.neuron.2018.08.010 119

    Article  Google Scholar 

  35. Guo BB, Bellingham SA, and Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. The Journal of Biological Chemistry, 2016,291(10):5128–37. DOI: 10.1074/jbc.m115.684258 119

    Article  Google Scholar 

  36. Prada I, Gabrielli M, Turola E, Iorio A, D’Arrigo G, Parolisi R, et al. Glia-to- neuron transfer of miRNAs via extracellular vesicles: A new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathologica, 2018, 135(4):529-50. DOI: 10.1007/s00401-017-1803-x 116, 117

    Article  Google Scholar 

  37. Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, et al. Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. Journal of Biological Chemistry, 2014, 289(35):24488–98. DOI:10.1074/jbc.M114.577213 116, 117

    Article  Google Scholar 

  38. Osorio-Querejeta I, Carregal-Romero S, Ayerdi-Izquierdo A, Mäger I, Wood M, Eg- imendia A, et al. MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles. Pharmaceutics, 2020, 12(2):186. DOI: 10.3390/pharmaceutics12020186 116, 117

    Article  Google Scholar 

  39. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy, 2011, 19(10):1769–79. DOI:10.1038/mt.2011.164 116, 117

    Article  Google Scholar 

  40. Selmaj I, Cichalewska M, Namiecinska M, Galazka G, Horzelski W, Selmaj KW, et al. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Annals of Neurology, 2017, 81(5):703–17. DOI: 10.1002/ana.24931 116, 117

    Article  Google Scholar 

  41. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, and Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 2013, 33(11):1711-5. DOI: 10.1038/jcbfm.2013.152 116, 117

    Article  Google Scholar 

  42. Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke, 2017, 48(3):747–53. DOI: 10.1161/STROKEAHA.116.015204 116, 117

    Article  Google Scholar 

  43. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochemistry International, 2017, 111:69–81. DOI:10.1016/j.neuint.2016.08.003 116, 117

    Article  Google Scholar 

  44. Kim DK, Nishida H, An SY, Shetty AK, Bartosh TJ, and Prockop DJ. Chromatograph- ically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc. of the National Academy of Sciences of the United States of America, 2016, 113(1):170-5. DOI: 10.1073/pnas.1522297113 116, 117

    Article  Google Scholar 

  45. Thomi G, Joerger-Messerli M, Haesler V, Muri L, Surbek D, and Schoeberlein A. In- tranasally administered exosomes from umbilical cord stem cells have preventive neuro- protective effects and contribute to functional recovery after perinatal brain injury. Cells, 2019, 8(8). DOI: 10.3390/cells8080855 116, 117

    Google Scholar 

  46. Yang J, Zhang X, Chen X, Wang L, and Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Molecular Therapy Nucleic Acids, 2017, 7:278–87. DOI: 10.1016/j.omtn.2017.04.010 116, 117

    Article  Google Scholar 

  47. Falker C, Hartmann A, Guett I, Dohler F, Altmeppen H, Betzel C, et al. Exosomal cellular prion protein drives fibrillization of amyloid beta and counteracts amyloid beta-mediated neurotoxicity. Journal of Neurochemistry, 2016, 137(1):88–100. DOI:10.1111/jnc.13514 116, 117

    Article  Google Scholar 

  48. Sadeghipour S and Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Seminars in Cell & Developmental Biology, 2017, 67:91–100. DOI:10.1016/j.semcdb.2017.03.005 120

    Article  Google Scholar 

  49. Pawliczek T and Crump CM. Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. Journal of Virology, 2009, 83(21):11254–64. DOI: 10.1128/jvi.00574-09 120

    Article  Google Scholar 

  50. Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, et al. HIV- 1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic, 2005,6(6):488–501. DOI: 10.1111/j.1600-0854.2005.00293.x 120

    Article  Google Scholar 

  51. Alenquer M and Amorim MJ. Exosome biogenesis, regulation, and function in viral infection. Viruses, 2015, 7(9):5066–83. DOI: 10.3390/v7092862 120

    Article  Google Scholar 

  52. Martins F, Ventura C, Santos S, and Viveiros M. QSAR based design of new antitubercular compounds: Improved isoniazid derivatives against multidrugresistant TB. Current Pharmaceutical Design, 2014, 20(27):4427–54. DOI:10.2174/1381612819666131118164434 120

    Article  Google Scholar 

  53. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C, et al. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine, 1996, 183(3):1161–72. DOI: 10.1084/jem.183.3.1161 120

    Article  Google Scholar 

  54. Singh PP, Li L, and Schorey JS. Exosomal RNA from mycobacterium tuberculosis- infected cells is functional in recipient macrophages. Traffic, 2015, 16(6):555–71. DOI:10.1111/tra.12278 120

    Article  Google Scholar 

  55. Wang J, Yao Y, Wu J, and Li G. Identification and analysis of exosomes secreted from macrophages extracted by different methods. International Journal of Clinical and Experimental Pathology, 2015, 8(6):6135–42. 120

    Google Scholar 

  56. Cheng Y and Schorey JS. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection. European Journal of Immunology, 2013, 43(12):3279–90. DOI: 10.1002/eji.201343727 120

    Google Scholar 

  57. Schorey JS and Harding CV. Extracellular vesicles and infectious diseases: New complexity to an old story. Journal of Clinical Investigation, 2016, 126(4):1181–9. DOI:10.1172/jci81132 120

    Article  Google Scholar 

  58. Bhatnagar S, Shinagawa K, Castellino FJ, and Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood, 2007,110(9):3234–44. DOI: 10.1182/blood-2007-03-079152 120

    Article  Google Scholar 

  59. Wang J, Yao Y, Chen X, Wu J, Gu T, and Tang X. Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 2018, 108:1451-9. DOI:10.1016/j.biopha.2018.09.174 120, 121

    Article  Google Scholar 

  60. Smith VL, Jackson L, and Schorey JS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. Journal of Immunology, 2015, 195(6):2722–30. DOI: 10.4049/jimmunol.1403186 120, 121

    Article  Google Scholar 

  61. Schorey JS, Cheng Y, Singh PP, and Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Reports, 2015, 16(1):24–43. DOI:10.15252/embr.201439363 120, 123

    Article  Google Scholar 

  62. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, et al. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature, 2013, 496(7445):367–71. DOI: 10.1038/nature12029 121, 124, 125

    Article  Google Scholar 

  63. Laganà A, Russo F, Veneziano D, Bella SD, Giugno R, Pulvirenti A, et al. Extracellular circulating viral microRNAs: Current knowledge and perspectives. Frontiers in Genetics, 2013, 4:120. DOI: 10.3389/fgene.2013.00120 121

    Article  Google Scholar 

  64. Cosset FL and Dreux M. HCV transmission by hepatic exosomes establishes a productive infection. Journal of Hepatology, 2014, 60(3):674–5. DOI: 10.1016/j.jhep.2013.10.015 121

    Article  Google Scholar 

  65. Chapuy-Regaud S, Dubois M, Plisson-Chastang C, Bonnefois T, Lhomme S, Bertrand- Michel J, et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie, 2017, 141:70–9. DOI:10.1016/j.biochi.2017.05.003 121

    Article  Google Scholar 

  66. Ansari MA, Singh VV, Dutta S, Veettil MV, Dutta D, Chikoti L, et al. Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. Journal of Virology, 2013, 87(15):8606–23. DOI: 10.1128/jvi.00805-13 121

    Article  Google Scholar 

  67. Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A, et al. Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef- and ADAM17- dependent mechanism. Journal of Virology, 2014, 88(19):11529–39. 121

    Article  Google Scholar 

  68. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5:5488. DOI:10.1038/ncomms6488 121, 124, 125

    Article  Google Scholar 

  69. Chen R, Zhao X, Wang Y, Xie Y, and Liu J. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G. Scientific Reports, 2017, 7:40783. DOI: 10.1038/srep40783 121, 124, 125

    Article  Google Scholar 

  70. Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, et al. Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Frontiers in Immunology, 2016, 7:335. DOI: 10.3389/fimmu.2016.00335 121, 124,125

    Article  Google Scholar 

  71. Zhang W, Jiang X, Bao J, Wang Y, Liu H, and Tang L. Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Frontiers in Immunology, 2018, 9:90. DOI: 10.3389/fimmu.2018.00090 122

    Article  Google Scholar 

  72. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M, Kelly I, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. Journal of Immunology, 2010, 185(9):5011–22. DOI: 10.4049/jim-munol.1000541 121

    Article  Google Scholar 

  73. Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, Wang C, et al. An exosome- based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. Journal of Cell Science, 2010, 123(Pt 6):842–52. DOI:10.1242/jcs.056465 121, 122

    Article  Google Scholar 

  74. Hassani K and Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: A comparative proteomic and functional analysis. PLoS Neglected Tropical Diseases, 2013, 7(5):e2185. DOI: 10.1371/journal.pntd.0002185 122

    Article  Google Scholar 

  75. Hassani K, Shio MT, Martel C, Faubert D, and Olivier M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PloS One, 2014, 9(4):e95007. DOI: 10.1371/journal.pone.0095007 122

    Article  Google Scholar 

  76. Ghosh J, Bose M, Roy S, and Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host & Microbe, 2013, 13(3):277–88. DOI: 10.1016/j.chom.2013.02.005 123

    Article  Google Scholar 

  77. Schnitzer JK, Berzel S, Fajardo-Moser M, Remer KA, and Moll H. Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine, 2010, 28(36):5785–93. DOI:10.1016/j.vaccine.2010.06.077 123

    Article  Google Scholar 

  78. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, et al. Extracellular vesicles from trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell, 2016, 164(1-2):246-57. DOI: 10.1016/j.cell.2015.11.051 124, 125

    Article  Google Scholar 

  79. Shekhawat SD, Purohit HJ, Taori GM, Daginawala HF, and Kashyap RS. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: A preliminary report. Journal of Infection and Public Health, 2016, 9(2):143–52. DOI: 10.1016/j.jiph.2015.07.003 124, 125

    Article  Google Scholar 

  80. Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. Journal of Immunology, 2004, 172(10):6272-80. DOI: 10.4049/jimmunol.172.10.6272 124, 125

    Article  Google Scholar 

  81. Pleet ML, Mathiesen A, DeMarino C, Akpamagbo YA, Barclay RA, Schwab A, et al. Ebola VP40 in exosomes can cause immune cell dysfunction. Frontiers in Microbiology, 2016, 7:1765. DOI: 10.3389/fmicb.2016.01765 124, 125

    Article  Google Scholar 

  82. Shimoda A, Ueda K, Nishiumi S, Murata-Kamiya N, Mukai S-A, Sawada S-I, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Scientific Reports, 2016, 6(1):1–9. DOI: 10.1038/srep18346 124, 125

    Article  Google Scholar 

  83. Husmann M, Beckmann E, Boller K, Kloft N, Tenzer S, Bobkiewicz W, et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Letters, 2009, 583(2):337–44. DOI: 10.1016/j.febslet.2008.12.028 124, 125

    Article  Google Scholar 

  84. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell, 2016, 165(5):1106–19. DOI: 10.1016/j.cell.2016.04.015 124, 125

    Article  Google Scholar 

  85. Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifud- din M, et al. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. Journal of Biological Chemistry, 2014, 289(32):22284–305. DOI:10.1074/jbc.M114.549659 124, 125

    Article  Google Scholar 

  86. Campbell TD, Khan M, Huang MB, Bond VC, and Powell MD. HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethnicity & Disease, 2008, 18(2 Suppl 2):S2-14–9. 124, 125

    Google Scholar 

  87. Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, et al. Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. The Journal of Biological Chemistry, 2016, 291(3):1251–66. DOI: 10.1074/jbc.m115.662171 124, 125

    Article  Google Scholar 

  88. de Carvalho JV, de Castro RO, da Silva EZ, Silveira PP, da Silva-Januário ME, Arruda E, et al. Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PloS One, 2014, 9(11):e113691. DOI: 10.1371/journal.pone.0113691 124, 125

    Article  Google Scholar 

  89. Arenaccio C, Anticoli S, Manf redi F, Chiozzini C, Olivetta E, and Federico M. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology, 2015, 12:87. DOI: 10.1186/s12977-015-0216-y 124, 125

    Article  Google Scholar 

  90. Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, et al. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Reports, 2013, 5(4):986-96. DOI: 10.1016/j.celrep.2013.10.019 124, 125

    Article  Google Scholar 

  91. Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, and Halary F Pivotal advance: The promotion of soluble DC-SIGN release by inflammatory signals and its enhancement of cytomegalovirus-mediated cis-infection of myeloid dendritic cells. Journal of Leukocyte Biology, 2011, 89(3):329–42. DOI: 10.1189/jlb.0710386 124, 125

    Article  Google Scholar 

  92. Hoshina S, Sekizuka T, Kataoka M, Hasegawa H, Hamada H, Kuroda M, et al. Profile of exosomal and intracellular microRNA in gamma-herpesvirus-infected lymphoma cell lines. PloS One, 2016, 11(9):e0162574. DOI: 10.1371/journal.pone.0162574 124, 125

    Article  Google Scholar 

  93. Meckes DG, Jr., Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc. of the National Academy of Sciences of the United States of America, 2013, 110(31):E2925–33. DOI: 10.1073/pnas.1303906110 124, 125

    Google Scholar 

  94. Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic, 2008, 9(10):1728–42. DOI: 10.1111/j.1600-0854.2008.00796.x 124, 125

    Article  Google Scholar 

  95. Kalamvoki M, Du T, and Roizman B. Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc. of the National Academy of Sciences of the United States of America, 2014, 111(46):E4991–6. DOI: 10.1073/pnas.1419338111 124, 125

    Google Scholar 

  96. Temme S, Eis-Hübinger AM, McLellan AD, and Koch N. The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. Journal of Immunology, 2010, 184(1):236–43. DOI: 10.4049/jimmunol.0902192 124, 125

    Article  Google Scholar 

  97. Bukong TN, Momen-Heravi F, Kodys K, Bala S, and Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathogens, 2014, 10(10):e1004424. DOI:10.1371/journal.ppat.1004424 124, 125

    Article  Google Scholar 

  98. Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J, Whitten-Bauer C, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe, 2012, 12(4):558–70. DOI:10.1016/j.chom.2012.08.010 124, 125

    Article  Google Scholar 

  99. Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc. of the National Academy of Sciences of the United States of America, 2013, 110(32):13109–13. DOI: 10.1073/pnas.1221899110 124, 125

    Article  Google Scholar 

  100. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sultmann H, et al. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells. PLoS Pathogens, 2015, 11(3):e1004712. DOI: 10.1371/jour-nal.ppat.1004712 124, 125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mirzaei, H., Rahimian, N., Mirzaei, H.R., Nahand, J.S., Hamblin, M.R. (2022). Exosomes and Non-Cancer Diseases. In: Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79177-2_7

Download citation

Publish with us

Policies and ethics