Skip to main content

Abstract

It is widely accepted that in most multicellular organisms, cells can communicate with each other using extra-cellular secreted molecules, such as lipids, nucleotides, proteins, or short peptides. These molecules are released into the extracellular space by the cells, and then bind to their receptors on other cells and induce intra-cellular signaling, in order to alter the physiological state of the recipient cells. Moreover, eukaryotic cells release particular types of membrane vesicles into their extra-cellular environment. These vesicles contain a variety of molecules, such as lipids or proteins, and even nucleic acids. These molecules can influence the recipient cells, which take up the vesicles in a complex manner. In the blood the vesicles were known as micro-particles, and in seminal fluid they have been called prostasomes, while the general term of exosomes or extracellular vesicles (EVs) is now becoming common. These membrane vesicles can be specific to the organs from which they originate, or else can just contain cell debris or markers of cell death [1]. The potential role of EVs as intercellular messengers is a scientific hypothesis that has attracted much attention during recent years [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ronquist G and Brody I. The prostasome: Its secretion and function in man. Biochimica et Biophysica Acta (BBA)—Reviews on Biomembranes, 1985, 822(2):203–18. DOI: 10.1016/0304-4157(85)90008-5 79

    Article  Google Scholar 

  2. Bobrie A, Colombo M, Raposo G, and Théry C. Exosome secretion: Molecular mechanisms and roles in immune responses. Traffic, 2011, 12(12):1659–68. DOI: 10.1111/j.1600-0854.2011.01225.x 79

    Article  Google Scholar 

  3. Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, et al. Exosomes with immune modulatory features are present in human breast milk. The Journal of Immunology, 2007, 179(3):1969–78. DOI: 10.4049/jimmunol.179.3.1969 79

    Article  Google Scholar 

  4. Sâenz-Cuesta M, Arbelaiz A, Oregi A, Irizar H, Osorio-Querejeta I, Munoz-Culla M, et al. Methods for extracellular vesicles isolation in a hospital setting. Frontiers in Immunology, 2015, 6:50. DOI: 10.3389/fimmu.2015.00050 79

    Article  Google Scholar 

  5. Brinton LT, Sloane HS, Kester M, and Kelly KA. Formation and role of exosomes in cancer. Cellular and Molecular Life Sciences, 2015, 72(4):659–71. DOI: 10.1007/s00018-014-1764-3 79

    Article  Google Scholar 

  6. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C, et al. B lymphocytes secrete antigen-presenting vesicles. Journal of Experimental Medicine, 1996, 183(3):1161–72. DOI: 10.1084/jem.183.3.1161 79

    Article  Google Scholar 

  7. Enderle D, Spiel A, Coticchia CM, Berghoff E, Mueller R, Schlumpberger M, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column–based method. PloS One, 2015, 10(8):e0136133. DOI: 0.1371/jour-nal.pone.0136133 79

    Article  Google Scholar 

  8. Heath N, Grant L, De Oliveira TM, Rowlinson R, Osteikoetxea X, Dekker N, et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Scientific Reports, 2018, 8(1):1—12. DOI: 10.1038/s41598-018-24163-y 79

    Article  Google Scholar 

  9. Carnino JM, Lee H, and Jin Y. Isolation and characterization of extracellular vesicles from broncho-alveolar lavage fluid: A review and comparison of different methods. Respiratory Research, 2019, 20(1):240. DOI: 10.1186/s12931-019-1210-z 79, 80

    Article  Google Scholar 

  10. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018(MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7(1):1535750. DOI:10.1080/20013078.2018.1535750 79

    Article  Google Scholar 

  11. Gardiner C, Vizio DD, Sahoo S, Théry C, Witwer KW, Wauben M, et al. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. Journal of Extracellular Vesicles, 2016, 5(1):32945. DOI: 10.3402/jev.v5.32945 80

    Article  Google Scholar 

  12. Johnstone RM, AdamM, Hammond J, Orr L, and Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 1987,262(19):9412–20. DOI: 10.1016/s0021-9258(18)48095-7 80

    Article  Google Scholar 

  13. Kassis S, Lauter CJ, StojanovM, and Salem Jr N. Exfoliation of the β-adrenergic receptor and the regulatory components of adenylate cyclase by cultured rat glioma C6 cells. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1986, 886(3):474-82. DOI:10.1016/0167-4889(86)90184-9 80

    Article  Google Scholar 

  14. Trams EG, Lauter CJ, Salem JN, and Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1981, 645(1):63-70. DOI: 10.1016/0005-2736(81)90512-5 80

    Article  Google Scholar 

  15. Raposo Gß, Tenza D, Mecheri S, Peronet R, Bonnerot C, and Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Molecular Biology of the Cell, 1997, 8(12):2631-45. DOI: 10.1091/mbc.8.12.2631 80

    Article  Google Scholar 

  16. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell derived exosomes. Nature Medicine, 1998, 4(5):594-600. DOI: 10.1038/nm0598-594 80

    Article  Google Scholar 

  17. Lotvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 2014. DOI: 10.3402/jev.v3.26913 80

    Google Scholar 

  18. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Pro- teomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. of the National Academy of Sciences, 2016, 113(8):E968- E77. DOI: 10.1073/pnas.1521230113 80

    Article  Google Scholar 

  19. Kalluri R. The biology and function of exosomes in cancer. The Journal of Clinical Investigation, 2016, 126(4):1208–15. DOI: 10.1172/jci81135 80

    Article  Google Scholar 

  20. Colombo M, Moita C. van NG, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ES- CRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. Journal of Cell Science, 2013, 126(Pt 24):5553–65. DOI:10.1242/jcs.128868 81

    Google Scholar 

  21. Schmidt O and Teis D. The ESCRT machinery. Current Biology, 2012, 22(4):R116-R20. DOI: 10.1016/j.cub.2012.01.028 81

    Article  Google Scholar 

  22. SD HWBNE. The ESCRT pathway. Developmental Cell, 2011, 21:77-91. DOI:10.1016/j.devcel.2011.05.015 81

    Article  Google Scholar 

  23. Mayers JR, Fyfe I, Schuh AL, Chapman ER, Edwardson JM, and Audhya A. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitiny- lated cargoes simultaneously. Journal of Biological Chemistry, 2011,286(11):9636-45. DOI:10.1074/jbc.m110.185363 81

    Article  Google Scholar 

  24. Kretschmer S, Ganzinger KA, Franquelim HG, and Schwille P. Synthetic cell division via membrane-transforming molecular assemblies. BMC Biology, 2019, 17(1):43. DOI:10.1186/s12915-019-0665-1 81

    Article  Google Scholar 

  25. Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD, et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. The EMBO Journal, 2007, 26(2):600–12. DOI: 10.1038/sj.emboj.7601501 81

    Article  Google Scholar 

  26. Wollert T and Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature, 2010, 464(7290):864–9. DOI: 10.1038/nature08849 81

    Article  Google Scholar 

  27. Yang B, Stjepanovic G, Shen Q,Martin A, and Hurley JH. Vps4 disassembles an ESCRT- III filament by global unfolding and processive translocation. Nature Structural & Molecular Biology, 2015, 22(6):492. DOI: 10.1038/nsmb.3015 81

    Article  Google Scholar 

  28. Mierzwa BE, Chiaruttini N, Redondo-Morata L, von FilseckJM, KonigJ, Larios J, et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology, 2017,19(7):787–98. DOI:10.1038/ncb3559 81

    Article  Google Scholar 

  29. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, et al. Challenges and opportunities in exosome research—Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 2019, 3(1):011503. DOI: 10.1063/1.5087122 81

    Article  Google Scholar 

  30. Vingtdeux V, Sergeant N, and Buée L. Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Frontiers in Physiology, 2012, 3:229. DOI:10.3389/fphys.2012.00229 82

    Article  Google Scholar 

  31. Stuffers S, Sem Wegner C, Stenmark H, and Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10(7):925–37. DOI: 10.1111/j.1600-0854.2009.00920.x 82

    Article  Google Scholar 

  32. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008, 319(5867):1244–7. DOI: 10.1126/science.1153124 83

    Article  Google Scholar 

  33. Vickers NJ. Animal communication: When I’m calling you, will you answer too? Current Biology, 2017, 27(14):R713-R5. DOI: 10.1016/j.cub.2017.05.064 83

    Article  Google Scholar 

  34. Toh WH, Tan JZA, Zulkefli KL, Houghton FJ, and Gleeson PA. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b-and AP4-dependent pathway. Traffic, 2017, 18(3):159-75. DOI: 10.1111/tra.12465 83

    Article  Google Scholar 

  35. Butler JS. The yin and yang of the exosome. Trends in Cell Biology, 2002,12(2):90-6. DOI:10.1016/s0962-8924(01)02225-5 83

    Article  Google Scholar 

  36. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Research, 2010, 70(4):1668-78. DOI: 10.1158/0008-5472.can-09-2470 83

    Article  Google Scholar 

  37. Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, et al. A lume- nal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Developmental Cell, 2006, 10(3):343-54. DOI: 10.1016/j.devcel.2006.01.012 83

    Article  Google Scholar 

  38. Chairoungdua A, Smith DL, Pochard P, Hull M, and Caplan MJ. Exosome release of J- catenin: A novel mechanism that antagonizes Wnt signaling. Journal of Cell Biology, 2010, 190(6):1079–91. DOI: 10.1083/jcb.201002049 83

    Article  Google Scholar 

  39. Lorentzen E and Conti E. The exosome and the proteasome: Nano-compartments for degradation. Cell, 2006, 125(4):651–4. DOI: 10.1016/j.cell.2006.05.002 83

    Article  Google Scholar 

  40. Rezaie J, Ajezi S, Avci ÇB, Karimipour M, Geranmayeh MH, Nourazarian A, et al. Exosomes and their application in biomedical field: Difficulties and advantages. Molecular Neurobiology, 2018, 55(4):3372–93. DOI: 10.1007/s12035-017-0582-7 83

    Article  Google Scholar 

  41. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 2014, 5(1):1–12. DOI: 10.1038/ncomms4477 83

    Article  Google Scholar 

  42. Huecas S and Andreu JM. Polymerization of nucleotide-free, GDP-and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Letters, 2004, 569(1-3):43-8. DOI: 10.1016/j.febslet.2004.05.048 83

    Article  Google Scholar 

  43. Zhang B, Yin Y, Lai RC, and Lim SK. Immunotherapeutic potential of extracellular vesicles. Frontiers in Immunology, 2014, 5:518. DOI: 10.3389/fimmu.2014.00518 85

    Article  Google Scholar 

  44. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, and Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007, 9(6):654–9. DOI: 10.1038/ncb1596 83, 85

    Article  Google Scholar 

  45. Mathivanan S, Ji H, and Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. Journal of Proteomics, 2010, 73(10):1907–20. DOI:10.1016/j.jprot.2010.06.006 83

    Article  Google Scholar 

  46. Mashouri L, Yousefi H, Aref AR, mohammad Ahadi A, Molaei F, and Alahari SK. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Molecular Cancer, 2019, 18(1):75. DOI: 10.1186/s12943-019-0991-5 84

    Article  Google Scholar 

  47. Théry C, Zitvogel L, and Amigorena S. Exosomes: Composition, biogenesis, and function. Nature Reviews Immunology, 2002, 2(8):569–79. DOI: 10.1038/nri855 84

    Article  Google Scholar 

  48. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Pro- teomic analysis of dendritic cell-derived exosomes: A secreted subcellular compartment distinct from apoptotic vesicles. The Journal of Immunology, 2001, 166(12):7309–18. DOI:10.4049/jimmunol.166.12.7309 84

    Article  Google Scholar 

  49. Chaput N and Théry C, Eds. Exosomes: Immune properties and potential clinical implementations. Seminars in Immunopathology, 2011, Springer. DOI: 10.1007/s00281-010-0233-9 84

    Google Scholar 

  50. Mathivanan S, Fahner CJ, Reid GE, and Simpson RJ. ExoCarta 2012: Database of exo- somal proteins, RNA and lipids. Nucleic Acids Research, 2012, 40(D1):D1241-D4. DOI:10.1093/nar/gkr828 84

    Article  Google Scholar 

  51. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/( complex. The Journal of Immunology, 2002, 168(7):3235–41. DOI: 10.4049/jimmunol.168.7.3235 84

    Article  Google Scholar 

  52. HurleyJH and Odorizzi G. Get on the exosome bus with ALIX. Nature Cell Biology, 2012, 14(7):654–5. DOI: 10.1038/ncb2530 84

    Article  Google Scholar 

  53. Zoller M. Tetraspanins: Push and pull in suppressing and promoting metastasis. Nature Reviews Cancer, 2009, 9(1):40–55. DOI: 10.1038/nrc2543 84

    Article  Google Scholar 

  54. Nabhan JF, Hu R, Oh RS, Cohen SN, and Lu Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. of the National Academy of Sciences, 2012, 109(11):4146-51. DOI: 10.1073/pnas.1200448109 84

    Article  Google Scholar 

  55. Fang Y, Wu N, Gan X, Yan W, Morrell JC, and Gould SJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biology, 2007, 5(6):e158. DOI: 10.1371/journal.pbio.0050158 84

    Article  Google Scholar 

  56. Shen B, Wu N, Yang J-M, and Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. Journal of Biological Chemistry, 2011,286(16):14383–95. DOI:10.1074/jbc.m110.208660 84

    Article  Google Scholar 

  57. Record M, Carayon K, Poirot M, and Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell—cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 2014, 1841(1):108–20. DOI: 10.1016/j.bbalip.2013.10.004 85

    Google Scholar 

  58. Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas CV, et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Research, 2014, 42(14):9195-208. DOI: 10.1093/nar/gku594 85

    Article  Google Scholar 

  59. Guduric-Fuchs J, O’Connor A, Camp B, O’Neill CL, Medina RJ, and Simpson DA. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics, 2012, 13(1):357. DOI: 10.1186/1471-2164-13-357 86

    Article  Google Scholar 

  60. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, and Ochiya T. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. Journal of Biological Chemistry, 2013, 288(15):10849–59. DOI:10.1074/jbc.m112.446831 86

    Article  Google Scholar 

  61. Villarroya-Beltri C, Gutiérrez-Vâzquez C, Sânchez-Cabo F, Pérez-Hernândez D, Vazquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 2013, 4:2980. DOI: 10.1038/ncomms3980 86

    Article  Google Scholar 

  62. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MA, Sadek P, Sie D, et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Reports, 2014, 8(6):1649–58. DOI: 10.1016/j.celrep.2014.08.027 86

    Article  Google Scholar 

  63. Nahand JS, Vandchali NR, Darabi H, Doroudian M, Banafshe HR, Moghoofei M, et al. Exosomal microRNAs: Novel players in cervical cancer. Epigenomics, 2020, 12(18):1651- 60. DOI: 10.2217/epi-2020-0026 86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mirzaei, H., Rahimian, N., Mirzaei, H.R., Nahand, J.S., Hamblin, M.R. (2022). Exosomes. In: Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79177-2_5

Download citation

Publish with us

Policies and ethics