Skip to main content

Abstract

The dysrégulation of microRNAs in cancer was first reported in 2002, when a cluster of two microRNAs (miR16 and miR-15) was detected at chromosome 13q14.3, which had been proposed as one of the commonly eliminated genetic regions in chronic lymphocytic leukemia (CLL) patients [1]. The deletion of this miRNA cluster acts (at least partly) by increasing the expression level of the specific target of miR-15/16, which is the anti-apoptotic protein B cell lymphoma 2 (BCL2). It has been found that micro-RNAs can contribute to each cancer hallmark described by Hanahan and Weinberg [2], as well affecting the clinical progression of many cancers at different stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. of the National Academy of Sciences, 2002, 99(24):15524–9. DOI: 10.1073/pnas.242606799 11

    Article  Google Scholar 

  2. Hanahan D and Weinberg RA. Hallmarks of cancer: The next generation. Cell, 2011, 144(5):646–74. DOI: 10.1016/j.cell.2011.02.013 11

    Article  Google Scholar 

  3. Ebert MS and Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell, 2012, 149(3):515–24. DOI: 10.1016/j.cell.2012.04.005 11

    Article  Google Scholar 

  4. Chiocca EA and Lawler SE. The many functions of microRNAs in glioblastoma. World Neurosurgery, 2010, 6(73):598–601. DOI: 10.1016/j.wneu.2010.06.047 11

    Article  Google Scholar 

  5. Godlewski J, Bronisz A, Nowicki MO, Chiocca EA, and Lawler S. MicroRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle, 2010, 9(14):2814-20. DOI: 10.4161/cc.9.14.12248 11

    Article  Google Scholar 

  6. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043):834–8. DOI: 10.1038/na- ture03702 11, 12

    Article  Google Scholar 

  7. Ziebarth JD, Bhattacharya A, and Cui Y. Integrative analysis of somatic mutations altering microRNA targeting in cancer genomes. PLoS One, 2012, 7(10):e47137. DOI: 10.1371/journal.pone.0047137 11

    Article  Google Scholar 

  8. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA, 2009, 15(9):1640–51. DOI: 10.1261/rna.1560209 11

    Article  Google Scholar 

  9. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell, 2010, 18(4):303–15. DOI: 10.1016/j.ccr.2010.09.007 12

    Article  Google Scholar 

  10. Kuang Y, Cai J, Li D, Han Q, Cao J, and Wang Z. Repression of Dicer is associated with invasive phenotype and chemoresistance in ovarian cancer. Oncology Letters, 2013, 5(4):1149–54. DOI: 10.3892/ol.2013.1158 12

    Article  Google Scholar 

  11. Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell, 2012, 151(4):900–11. DOI: 10.1016/j.cell.2012.09.042 12

    Article  Google Scholar 

  12. Wan G, Zhang X, Langley RR, Liu Y, Hu X, Han C, et al. DNA-damage-induced nuclear export of precursor microRNAs is regulated by the ATM-AKT pathway. Cell Reports, 2013, 3(6):2100–12. DOI: 10.1016/j.celrep.2013.05.038 12

    Article  Google Scholar 

  13. Medina PP, Nolde M, and Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 2010, 467(7311):86–90. DOI: 10.1038/nature09284 12

    Article  Google Scholar 

  14. Sun Y-M, Lin K-Y, and Chen Y-Q.Diverse functions of miR-125 family in different cell contexts. Journal of Hematology & Oncology, 2013, 6(1):6. DOI: 10.1186/1756-8722-6-6 12, 13

    Article  Google Scholar 

  15. Shaham L, Binder V, Gefen N, Borkhardt A, and Izraeli S. MiR-125 in normal and malignant hematopoiesis. Leukemia, 2012, 26(9):2011–8. DOI: 10.1038/leu.2012.90 12, 13

    Article  Google Scholar 

  16. Tili E, Michaille J-J, Luo Z, Volinia S, Rassenti LZ, Kipps TJ, et al. The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood, The Journal of the American Society of Hematology, 2012, 120(13):2631–8. DOI: 10.1182/blood-2012-03-415737 13

    Google Scholar 

  17. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. Journal of Clinical Oncology, 2012, 30(5):488. DOI: 10.1200/jco.2011.34.7898 13

    Article  Google Scholar 

  18. Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y, et al. MiR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Research, 2013, 73(2):756–66. DOI: 10.1158/0008-5472.can-12-2651 13

    Article  Google Scholar 

  19. Li L, Zhang Z, Yang Q, and Ning M. Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis. Life Sciences, 2019, 231:116528. DOI: 10.1016/j.lfs.2019.06.003 13

    Article  Google Scholar 

  20. Cui G, Cui M, Li Y, Liang Y, Li W, Guo H, et al. MiR-186 targets ROCK1 to suppress the growth and metastasis of NSCLC cells. Tumor Biology, 2014, 35(9):8933–7. DOI: 10.1007/s13277-014-2168-6 13

    Article  Google Scholar 

  21. Dong Y, Jin X, Sun Z, Zhao Y, and Song X. MiR-186 inhibited migration of NSCLC via targeting cdc42 and effecting EMT process. Molecules and Cells, 2017, 40(3):195. DOI: 10.14348/molcells.2017.2291 13

    Google Scholar 

  22. Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G, et al. MiR-186 inhibits proliferation, migration, and invasion of non-small cell lung cancer cells by downregulating Yin Yang 1. Cancer Biomarkers, 2018, 21(1):221–8. DOI: 10.3233/cbm-170670 13

    Article  Google Scholar 

  23. Huang T, She K, Peng G, Wang W, Huang J, Li J, et al. MicroRNA-186 suppresses cell proliferation and metastasis through targeting MAP3K2 in non-small cell lung cancer. InternationalJournal of Oncology, 2016, 49(4):1437–44. DOI: 10.3892/ijo.2016.3637 13

    Google Scholar 

  24. Ruan L, Chen J, Ruan L, Yang T, and Wang P. MicroRNA-186 suppresses lung cancer progression by targeting SIRT6. Cancer Biomarkers, 2018, 21(2):415–23. DOI: 10.3233/cbm-170650 13

    Article  Google Scholar 

  25. Hydbring P, Wang Y, Fassl A, Li X, Matia V, Otto T, et al. Cell-cycle-targeting microRNAs as therapeutic tools against refractory cancers. Cancer Cell, 2017, 31(4):576–90.e8. 13

    Article  Google Scholar 

  26. Hu C-B, Li Q-L, Hu J-F, Zhang Q,Xie J-P, and Deng L. MiR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pacific Journal of Cancer Prevention, 2014, 15(16):6543–6. DOI: 10.7314/apjcp.2014.15.16.6543 13

    Article  Google Scholar 

  27. Lu S, Wang MS, Chen PJ, Ren Q, and Bai P. MiRNA-186 inhibits prostate cancer cell proliferation and tumor growth by targeting YY1 and CDK6. Experimental and Therapeutic Medicine, 2017, 13(6):3309–14. DOI: 10.3892/etm.2017.4387 14

    Article  Google Scholar 

  28. Hua X, Xiao Y, Pan W, Li M, Huang X, Liao Z, et al. MiR-186 inhibits cell proliferation of prostate cancer by targeting GOLPH3. American Journal of Cancer Research, 2016, 6(8):1650. 14

    Google Scholar 

  29. Li W, Guo F, Gu M, Wang G, He X, Zhou J, et al. Increased expression of GOLPH3 is associated with the proliferation of prostate cancer. Journal of Cancer, 2015, 6(5):420. DOI: 10.7150/jca.11228 14

    Article  Google Scholar 

  30. Chang Z, Cui J, and Song Y. Long noncoding RNA PVT1 promotes EMT via mediating microRNA-186 targeting of Twist1 in prostate cancer. Gene, 2018, 654:36–42. DOI: 10.1016/j.gene.2018.02.036 14

    Article  Google Scholar 

  31. Yao K, He L, Gan Y, Zeng Q, Dai Y, and Tan J. MiR-186 suppresses the growth and metastasis of bladder cancer by targeting NSBP1. Diagnostic Pathology, 2015, 10(1):1–7. DOI: 10.1186/s13000-015-0372-3 14

    Article  Google Scholar 

  32. Rochman M, Malicet C, and Bustin M. HMGN5/NSBP1: A new member of the HMGN protein family that affects chromatin structure and function. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 2010, 1799(1-2):86–92. DOI: 10.1016/j.bbagrm.2009.09.012 14

    Article  Google Scholar 

  33. He X, Ping J, and Wen D. MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C. Experimental and Therapeutic Medicine, 2017, 14(4):3253–8. DOI: 10.3892/etm.2017.4908 14

    Article  Google Scholar 

  34. Li J, Xia L, Zhou Z, Zuo Z, Xu C, Song H, et al. MiR-186-5p upregulation inhibits proliferation, metastasis and epithelial-to-mesenchymal transition of colorectal cancer cell by targeting ZEB1. Archives of Biochemistry and Biophysics, 2018, 640:53–60. DOI: 10.1016/j.abb.2018.01.002 14

    Article  Google Scholar 

  35. Niu Q, Li X, Xia D, Jiang Y, Tian Z, Bian C, et al. MicroRNA-186 affects the proliferation of tumor cells via yes-associated protein 1 in the occurrence and development of pancreatic cancer. Experimental and Therapeutic Medicine, 2017, 14(3):2094–100. DOI: 10.3892/etm.2017.4770 14

    Article  Google Scholar 

  36. Kong W, He L, Richards E, Challa S, Xu C, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33(6):679–89. DOI: 10.1038/onc.2012.636 14

    Article  Google Scholar 

  37. Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518(7537):107–10. DOI: 10.1038/nature13905 14

    Article  Google Scholar 

  38. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. of the National Academy of Sciences, 2012, 109(26):E1695–E704. DOI: 10.1073/pnas.1201516109 14

    Article  Google Scholar 

  39. Levati L, Pagani E, Romani S, Castiglia D, Piccinni E, Covaciu C, et al. MicroRNA-155 targets the SKI gene in human melanoma cell lines. Pigment Cell & Melanoma Research, 2011, 24(3):538–50. DOI: 10.1111/j.1755-148x.2011.00857.x 14

    Article  Google Scholar 

  40. Qin W, Ren Q, Liu T, Huang Y, and Wang J. MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets CLDN1. FEBS Letters, 2013, 587(9):1434–9. DOI: 10.1016/j.febslet.2013.03.023 14

    Article  Google Scholar 

  41. Li C-L, Nie H, Wang M, SuL-P, Li J-F, Yu Y-Y, et al. MicroRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncology Reports, 2012, 27(6):1960–6. DOI: 10.3892/or.2012.1719 14

    Google Scholar 

  42. Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V, et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Molecular Cancer, 2014, 13(1):79. DOI: 10.1186/1476-4598-13-79 14

    Article  Google Scholar 

  43. Ambros V. The functions of animal microRNAs. Nature, 2004, 431(7006):350–5. DOI: 10.1038/nature02871 14

    Article  Google Scholar 

  44. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808):86–9. DOI: 10.1038/35040556 14, 15

    Article  Google Scholar 

  45. Johnson SM, Lin S-Y, and Slack FJ. The time of appearance of the C. elegans let- 7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Developmental Biology, 2003, 259(2):364–79. DOI: 10.1016/s0012- 1606(03)00202-1 14

    Article  Google Scholar 

  46. Thomson M, Parker J, Perou C, and Hammond S. A custom microarray platform was analyzed of miRNA gene expression. Nature Methods, 2004, 1:47–53. DOI: 10.1038/nmeth704 14, 15

    Article  Google Scholar 

  47. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 2004, 5(9):R68. DOI: 10.1186/gb-2004-5-9-r68 15

    Article  Google Scholar 

  48. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772):901–6. DOI: 10.1038/35002607 15

    Article  Google Scholar 

  49. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, et al. RAS is regulated by the let-7 microRNA family. Cell, 2005, 120(5):635–47. DOI: 10.1016/j.cell.2005.01.014 15, 16, 17, 18

    Article  Google Scholar 

  50. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Research, 2004, 64(11):3753–6. DOI: 10.1158/0008- 5472.can-04-0637 15, 16, 17, 18

    Article  Google Scholar 

  51. Tsang WP and Kwok TT Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis, 2008, 13(10):1215–22. DOI: 10.1007/s10495- 008-0256-z 15

    Article  Google Scholar 

  52. Nuovo GJ, Garofalo M, Valeri N, Roulstone V, Volinia S, Cohn DE, et al. Reovirus- associated reduction of microRNA-let-7d is related to the increased apoptotic death of cancer cells in clinical samples. Modern Pathology, 2012, 25(10):1333–44. DOI: 10.1038/modpathol.2012.95 15

    Article  Google Scholar 

  53. Lu L, Schwartz P, Scarampi L, Rutherford T, Canuto EM, Yu H, et al. MicroRNA let-7a: A potential marker for selection of paclitaxel in ovarian cancer management. Gynecologic Oncology, 2011, 122(2):366–71. DOI: 10.1016/j.ygyno.2011.04.033 15

    Article  Google Scholar 

  54. Chan JA, Krichevsky AM, and Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 2005, 65(14):6029–33. DOI: 10.1158/0008- 5472.can-05-0137 15, 19

    Article  Google Scholar 

  55. Thorland EC, Myers SL, Gostout BS, and Smith DI. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene, 2003, 22(8):1225–37. DOI: 10.1038/sj.onc.1206170 15

    Article  Google Scholar 

  56. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, and Patel T MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 2007, 133(2):647–58. DOI: 10.1053/j.gastro.2007.05.022 15

    Article  Google Scholar 

  57. Feng Y-H, Wu C-L, Tsao C-J, Chang J-G, Lu P-J, Yeh K-T, et al. Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biology & Therapy, 2011, 11(1):111–21. DOI: 10.4161/cbt.11.1.13965 15

    Article  Google Scholar 

  58. Wu H, Ng R, Chen X, Steer CJ, and Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut, 2016, 65(11):1850–60. DOI: 10.1136/gutjnl-2014- 308430 19

    Article  Google Scholar 

  59. Wang W, Li J, Zhu W, Gao C, Jiang R, Li W, et al. MicroRNA-21 and the clinical outcomes of various carcinomas: A systematic review and meta-analysis. BMC Cancer, 2014, 14(1):819. DOI: 10.1186/1471-2407-14-819 19

    Article  Google Scholar 

  60. Zhang ZJ and Ma SL. MiRNAs in breast cancer tumorigenesis. Oncology Reports, 2012, 27(4):903–10. DOI: 10.3892/or.2011.1611 19

    Article  Google Scholar 

  61. Yan L-X, Huang X-F, Shao Q, Huang M-Y, Deng L, Wu Q-L, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 2008, 14(11):2348–60. DOI: 10.1261/rna.1034808 19

    Article  Google Scholar 

  62. Venturutti L, Romero LV, Urtreger AJ, Chervo MF, Russo RC, Mercogliano MF, et al. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR- 21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene, 2016, 35(17):2208–22. DOI: 10.1038/onc.2015.281 19

    Article  Google Scholar 

  63. Li S, Yang X, Yang J, Zhen J, and Zhang D. Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clinical and Experimental Medicine, 2016, 16(1):29–35. DOI: 10.1007/s10238-014-0332-3 19

    Article  Google Scholar 

  64. Erbes T, Hirschfeld M, Rücker G, Jaeger M, Boas J, Iborra S, et al. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative noninvasive biomarker. BMC Cancer, 2015, 15(1):193. DOI: 10.1186/s12885–015–1190–4 19

    Article  Google Scholar 

  65. Wang Y-Y, Ye Z-Y, Zhao Z-S, Li L, Wang Y-X, Tao H-Q et al. Clinicopatho- logic significance of miR-10b expression in gastric carcinoma. Human Pathology, 2013, 44(7):1278-85. DOI: 10.1016/j.humpath.2012.10.014 16, 17, 18

    Article  Google Scholar 

  66. Tian Y, Luo A, Cai Y, Su Q, Ding F, Chen H, et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. Journal of Biological Chemistry, 2010, 285(11):7986-94. DOI: 10.1074/jbc.m109.062877 16, 17, 18

    Article  Google Scholar 

  67. Fletcher CE, Dart DA, Sita-Lumsden A, Cheng H, Rennie PS, and Bevan CL. Androgen-regulated processing of the oncomir miR-27a, which targets Pro- hibitin in prostate cancer. Human Molecular Genetics, 2012, 21(14):3112–27. DOI: 10.1093/hmg/dds139 16, 17, 18

    Article  Google Scholar 

  68. Knackmuss U, Lindner S, Aneichyk T, Kotkamp B, Knust Z, Villunger A, et al. MAP3K11 is a tumor suppressor targeted by the oncomiR miR-125b in early B cells. Cell Death & Differentiation, 2016, 23(2):242-52. DOI: 10.1038/cdd.2015.87 16, 17, 18

    Article  Google Scholar 

  69. Zheng Y, Zhang H, Zhang X, Feng D, Luo X, Zeng C, et al. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene, 2012, 31(1):80. DOI: 10.1038/onc.2011.208 16, 17, 18

    Article  Google Scholar 

  70. Ng WL, Yan D, Zhang X, Mo Y-Y, and Wang Y. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair, 2010, 9(11):1170–5. DOI: 10.1016/j.dnarep.2010.08.007 16, 17, 18

    Article  Google Scholar 

  71. Park J-K, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, et al. MiR-132 and miR–212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochemical and Biophysical Research Communications, 2011, 406(4):518–23. DOI: 10.1016/j.bbrc.2011.02.065 16, 17, 18

    Article  Google Scholar 

  72. Zhu S, Si M-L, Wu H, and Mo Y-Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). Journal of Biological Chemistry, 2007, 282(19):14328–36. DOI: 10.1074/jbc.m611393200 16, 17, 18

    Article  Google Scholar 

  73. Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, et al. MicroRNA-22, downregu- lated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. British Journal of Cancer, 2010, 103(8):1215–20. DOI: 10.1038/sj.bjc.6605895 16, 17, 18

    Article  Google Scholar 

  74. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, et al. Antagomir- 17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PloS One, 2008, 3(5):e2236. DOI: 10.1371/journal.pone.0002236 16, 17, 18

    Article  Google Scholar 

  75. Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, et al. MicroRNA- 301 mediates proliferation and invasion in human breast cancer. Cancer Research, 2011, 71(8):2926–37. DOI: 10.1158/0008–5472.can-10–3369 16, 17, 18

    Article  Google Scholar 

  76. Shao J, Cao J, Liu Y, Mei H, Zhang Y, and Xu W. MicroRNA-519a promotes proliferation and inhibits apoptosis of hepatocellular carcinoma cells by targeting FOXF2. FEBS Open Bio, 2015, 5:893-9. DOI: 10.1016/j.fob.2015.10.009 16, 17, 18

    Article  Google Scholar 

  77. Tu K, Liu Z, Yao B, Han S, and Yang W. MicroRNA–519a promotes tumor growth by targeting PTEN/PI3K/AKT signaling in hepatocellular carcinoma. International Journal of Oncology, 2016, 48(3):965–74. DOI: 10.3892/ijo.2015.3309 16, 17, 18

    Article  Google Scholar 

  78. Ward A, Shukla K, Balwierz A, Soons Z, König R, Sahin O, et al. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumoursuppressor genes in ER+ breast cancer. The Journal of Pathology, 2014, 233(4):368–79. DOI: 10.1002/path.4363 16, 17, 18

    Article  Google Scholar 

  79. Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, et al. MiR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell, 2008, 14(5):382–93. DOI: 10.1016/j.ccr.2008.10.005 16, 17, 18

    Article  Google Scholar 

  80. Voorhoeve PM, Le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, et al. A genetic screen implicates miRNA–372 and miRNA–373 as oncogenes in testicular germ cell tumors. Cell, 2006, 124(6):1169–81. DOI: 10.1016/j.cell.2006.02.037 16, 17, 18

    Article  Google Scholar 

  81. Xia X, Li Y, Wang W, Tang F, Tan J, Sun L, et al. MicroRNA-1908 functions as a glioblastoma oncogene by suppressing PTEN tumor suppressor pathway. Molecular Cancer, 2015, 14(1):1–14. DOI: 10.1186/s12943–015–0423–0 16, 17, 18

    Article  Google Scholar 

  82. Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR- 675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 2010, 31(3):350–8. DOI: 10.1093/carcin/bgp181 16, 17, 18

    Article  Google Scholar 

  83. Ling N, Gu J, Lei Z, Li M, Zhao J, Zhang H-T, et al. MicroRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncology Reports, 2013, 30(5):2111–8. DOI: 10.3892/or.2013.2685 16, 17, 18

    Article  Google Scholar 

  84. Wang J and Wu J. Role of miR–155 in breast cancer. Frontiers in Bioscience, 2012, 17:2350–5. DOI: 10.2741/4056 16, 17, 18, 20

    Article  Google Scholar 

  85. Czyzyk-Krzeska M and Zhang X. MiR–155 at the heart of oncogenic pathways. Oncogene, 2014, 33(6):677–8. DOI: 10.1038/onc.2013.26 16, 17, 18

    Article  Google Scholar 

  86. Jiang S, Zhang H-W, Lu M-H, He X-H, Li Y, Gu H, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Research, 2010, 70(8):3119–27. DOI: 10.1158/0008–5472.can–09–4250 16, 17, 18

    Article  Google Scholar 

  87. Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, et al. MicroRNA–155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. Journal of Biological Chemistry, 2010, 285(23):17869–79. DOI: 10.1074/jbc.m110.101055 16, 17, 18

    Article  Google Scholar 

  88. Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, and Plow EF. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. International Journal of Cancer, 2011, 129(6):1331–43. DOI: 10.1002/ijc.25793 16, 17, 18

    Article  Google Scholar 

  89. Sengupta S, den Boon JA, Chen I-H, Newton MA, Stanhope SA, Cheng Y-J, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mR- NAs encoding extracellular matrix proteins. Proc. of theNational Academy of Sciences, 2008, 105(15):5874–8. 16, 17, 18

    Article  Google Scholar 

  90. Scheibner KA, Teaboldt B, Hauer MC, Chen X, Cherukuri S, Guo Y, et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14–3–30. PloS One, 2012, 7(12):e50895. DOI: 10.1371/journal.pone.0050895 16, 17, 18

    Article  Google Scholar 

  91. Zoni E, van der Horst G, van de Merbel AF, Chen L, Rane JK, Pelger RC, et al. MiR- 25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of av- and a6-integrin expression. Cancer Research, 2015, 75(11):2326–36. DOI: 10.1158/0008–5472.can–14–2155 16, 17, 18

    Article  Google Scholar 

  92. Chang Y-S, Chen W-Y, Yin JJ, Sheppard-Tillman H, Huang J, and Liu Y-N. EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Research, 2015, 75(15):3077–86. DOI: 10.1158/0008–5472.can–14–3380 16, 17, 18

    Article  Google Scholar 

  93. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Research, 2012, 40(8):3689–703. DOI: 10.1093/nar/gkr1222 16, 17, 18

    Article  Google Scholar 

  94. Nohata N, Hanazawa T, Enokida H, and Seki N. MicroRNA–1/133a and microRNA–206/133b clusters: Dysregulation and functional roles in human cancers. Oncotarget, 2012, 3(1):9. DOI: 10.18632/oncotarget.424 16, 17, 18

    Article  Google Scholar 

  95. Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, et al. MicroRNA–9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PloS One, 2013, 8(1):e55719. DOI: 10.1371/journal.pone.0055719 16, 17, 18

    Article  Google Scholar 

  96. Lee YS and Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes & Development, 2007, 21(9):1025–30. DOI: 10.1101/gad.1540407 16, 17, 18

    Article  Google Scholar 

  97. Sampson VB, Rong NH, Han J, Yang Q,Aris V, Soteropoulos P, et al. MicroRNA let- 7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research, 2007, 67(20):9762–70. DOI: 10.1158/0008–5472.can-07–2462 16, 17, 18

    Article  Google Scholar 

  98. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Molecular Therapy, 2011, 19(6):1116–22. DOI: 10.1038/mt.2011.48 16, 17, 18

    Article  Google Scholar 

  99. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, et al. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 2009, 28(4):347–58. DOI: 10.1038/emboj.2008.294 16, 17, 18

    Article  Google Scholar 

  100. Shi X-B, Tepper CG, and deVere White RW. Cancerous miRNAs and their regulation. Cell Cycle, 2008, 7(11):1529–38. DOI: 10.4161/cc.7.11.5977 16, 17, 18

    Article  Google Scholar 

  101. Chen F, Chen L, He H, Huang W, Zhang R, Li P, et al. Up-regulation of microRNA-16 in glioblastoma inhibits the function of endothelial cells and tumor angiogenesis by targeting Bmi-1. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2016, 16(5):609–20. DOI: 10.2174/1871520615666150916092251 16, 17, 18

    Google Scholar 

  102. Endo H, Muramatsu T, Furuta M, Uzawa N, Pimkhaokham A, Amagasa T, et al. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis, 2013, 34(3):560–9. DOI: 10.1093/carcin/bgs376 16, 17, 18

    Article  Google Scholar 

  103. Keklikoglou I, Koerner C, Schmidt C, Zhang J, Heckmann D, Shavinskaya A, et al. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-ĸ B and TGF-β signaling pathways. Oncogene, 2012, 31(37):4150–63. DOI: 10.1038/onc.2011.571 16, 17, 18

    Article  Google Scholar 

  104. Li KKW, Pang JCS, Lau KM, Zhou L, Mao Y, Wang Y, et al. MiR–383 is downregu- lated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathology, 2013, 23(4):413–25. DOI: 10.1111/bpa.12014 16, 17, 18

    Article  Google Scholar 

  105. Kikkawa N, Kinoshita T, Nohata N, Hanazawa T, Yamamoto N, Fukumoto I, et al. MicroRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. International Journal of Oncology, 2014, 44(6):2085–92. DOI: 10.3892/ijo.2014.2349 16, 17, 18

    Article  Google Scholar 

  106. Liang L, Li X, Zhang X, Lv Z, He G, Zhao W, et al. MicroRNA–137, an HMGA1 target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology, 2013, 144(3):624–35.e4. DOI: 10.1053/j.gastro.2012.11.033 16, 17, 18

    Article  Google Scholar 

  107. Luo W, Huang B, Li Z, Li H, Sun L, Zhang Q, et al. MicroRNA-449a is downregulated in non-small cell lung cancer and inhibits migration and invasion by targeting c-Met. PloS One, 2013, 8(5):e64759. DOI: 10.1371/journal.pone.0064759 16, 17, 18

    Article  Google Scholar 

  108. Kheir TB, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, et al. MiR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Molecular Cancer, 2011, 10(1):1–12. DOI: 10.1186/1476–4598–10–29 16, 17, 18

    Article  Google Scholar 

  109. Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genetics, 2010, 6(3):e1000879. DOI: 10.1371/journal.pgen.1000879 16, 17, 18

    Article  Google Scholar 

  110. Kroiss A, Vincent S, Decaussin-Petrucci M, Meugnier E, Viallet J, Ruffion A, et al. Androgen-regulated microRNA-135a decreases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene, 2015, 34(22):2846–55. DOI: 10.1038/onc.2014.222 16, 17, 18

    Article  Google Scholar 

  111. Xia H, Sun S, Wang B, Wang T, Liang C, Li G, et al. MiR–143 inhibits NSCLC cell growth and metastasis by targeting Limk1. International Journal of Molecular Sciences, 2014, 15(7):11973–83. DOI: 10.3390/ijms150711973 16, 17, 18

    Article  Google Scholar 

  112. Lin S-L, Chiang A, Chang D, and Ying S-Y. Loss of mir-146a function in hormone- refractory prostate cancer. RNA, 2008, 14(3):417–24. DOI: 10.1261/rna.874808 16, 17, 18

    Article  Google Scholar 

  113. Bhaumik D, Scott G, Schokrpur S, Patil C, Campisi J, and Benz C. Expression of microRNA-146 suppresses NF-ĸ B activity with reduction of metastatic potential in breast cancer cells. Oncogene, 2008, 27(42):5643–7. DOI: 10.1038/onc.2008.171 16, 17, 18

    Article  Google Scholar 

  114. Bischoff A, Huck B, Keller B, Strotbek M, Schmid S, Boerries M, et al. MiRl49 functions as a tumor suppressor by controlling breast epithelial cell migration and invasion. Cancer Research, 2014, 74(18):5256–65. DOI: 10.1158/0008-5472.can-13–3319 16, 17, 18

    Article  Google Scholar 

  115. Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, et al. MiR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes & Development, 2015, 29(7):732–45. DOI: 10.1101/gad.257394.114 16, 17, 18

    Article  Google Scholar 

  116. Tan S, Li R, Ding K, Lobie PE, and Zhu T MiR-198 inhibits migration and invasion of hepatocellular carcinoma cells by targeting the HGF/c-MET pathway. FEBS Letters, 2011, 585(14):2229–34. DOI: 10.1016/j.febslet.2011.05.042 16, 17, 18

    Article  Google Scholar 

  117. Holohan C, Van Schaeybroeck S, Longley DB, and Johnston PG. Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 2013, 13(10):714–26. DOI: 10.1038/nrc3599 20

    Article  Google Scholar 

  118. Boyle P and Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer, 2008. 20

    Google Scholar 

  119. El-Serag HB and Rudolph KL. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7):2557–76. DOI: 10.1053/j.gastro.2007.04.061 20

    Article  Google Scholar 

  120. Forner A, Hessheimer AJ, Real MI, and Bruix J. Treatment of hepatocellular carcinoma. Critical Reviews in Oncology/Hematology, 2006, 60(2):89–98. DOI: 10.1016/j.critrevonc.2006.06.001 20

    Article  Google Scholar 

  121. Xu N, Zhang J, Shen C, Luo Y, Xia L, Xue F, et al. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochemical and Biophysical Research Communications, 2012, 423(4):826–31. DOI: 10.1016/j.bbrc.2012.06.048 20

    Article  Google Scholar 

  122. Shi L, Chen Z-G, Wu L-l, Zheng J-J, Yang J-R, Chen X-F, et al. MiR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pacific Journal of Cancer Prevention, 2015, 15(23):10439–44. DOI: 10.7314/apjcp.2014.15.23.10439 20

    Article  Google Scholar 

  123. Qin J, Luo M, Qian H, and Chen W. Upregulated miR-182 increases drug resistance in cisplatin-treated HCC cell by regulating TP53INP1. Gene, 2014, 538(2):342–7. DOI: 10.1016/j.gene.2013.12.043 20

    Article  Google Scholar 

  124. Mao K, Zhang J, He C, Xu K, Liu J, Sun J, et al. Restoration of miR-193b sensitizes Hepatitis B virus-associated hepatocellular carcinoma to sorafenib. Cancer Letters, 2014, 352(2):245–52. DOI: 10.1016/j.canlet.2014.07.004 20

    Article  Google Scholar 

  125. Xia H, Ooi LLP, and Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology, 2013, 58(2):629–41. DOI: 10.1002/hep.26369 20

    Article  Google Scholar 

  126. Khazaei Z, Mosavi Jarrahi A, Momenabadi V, Ghorat F, Adineh H, Sohrabivafa M, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide stomach cancers and their relationship with the human development index (HDI). World Cancer Research Journal, 2019, 6:e1257. DOI: 10.3322/caac.21492 20

    Google Scholar 

  127. Jiang Y-W and Chen L-A. MicroRNAs as tumor inhibitors, oncogenes, biomarkers for drug efficacy and outcome predictors in lung cancer. Molecular Medicine Reports, 2012, 5(4):890–4. DOI: 10.3892/mmr.2012.776 20

    Article  Google Scholar 

  128. Wei X, Shen X, Ren Y, and Hu W. The roles of micrornas in regulating chemotherapy resistance of non-small cell lung cancer. Current Pharmaceutical Design, 2017, 23(39):5983–8. DOI: 10.2174/1381612823666171018105207 21

    Article  Google Scholar 

  129. Huang J-Y, Cui S-Y, Chen Y-T, Song H-Z, Huang G-C, Feng B, et al. MicroRNA- 650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression. PLoS One, 2013, 8(8):e72615. DOI: 10.1371/journal.pone.0072615 21

    Article  Google Scholar 

  130. Sun F, Wan M, Xu X, Gao B, Zhou Y, Sun J, et al. Crosstalk between miR-34a and notch signaling promotes differentiation in apical papilla stem cells (SCAPs). Journal of Dental Research, 2014, 93(6):589–95. DOI: 10.1177/0022034514531146 21

    Article  Google Scholar 

  131. Rathod SS, Rani SB, Khan M, Muzumdar D, and Shiras A. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio, 2014, 4:485–95. DOI: 10.1016/j.fob.2014.05.002 21

    Article  Google Scholar 

  132. Wang Q, Zhong M, Liu W, Li J, Huang J, and Zheng L. Alterations of microRNAs in cisplatin-resistant human non-small cell lung cancer cells (A549/DDP). Experimental Lung Research, 2011, 37(7):427–34. DOI: 10.3109/01902148.2011.584263 21

    Article  Google Scholar 

  133. Zhang H, Zhang H, Zhao M, Lv Z, Zhang X, Qin X, et al. MiR-138 inhibits tumor growth through repression of EZH2 in non-small cell lung cancer. Cellular Physiology and Biochemistry, 2013, 31(1):56–65. DOI: 10.1159/000343349 21, 22

    Article  Google Scholar 

  134. Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, et al. MiR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Research, 2010, 70(5):1793–803. DOI: 10.1158/0008–5472.can–09–3112 21

    Article  Google Scholar 

  135. Li H, Zhang P, Sun X, Sun Y, Shi C, Liu H, et al. MicroRNA-181a regulates epithelialmesenchymal transition by targeting PTEN in drug-resistant lung adenocarcinoma cells. International Journal of Oncology, 2015, 47(4):1379–92. DOI: 10.3892/ijo.2015.3144 21

    Article  Google Scholar 

  136. Davidson B and Tropé CG. Ovarian cancer: Diagnostic, biological, and prognostic aspects. Women's Health, 2014, 10(5):519–33. DOI: 10.2217/whe.14.37 21

    Article  Google Scholar 

  137. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, et al. MicroRNA microarray identifies let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Research, 2008, 68(24):10307–14. DOI: 10.1158/0008–5472.can- 08–1954 21

    Article  Google Scholar 

  138. Wendler A, Keller D, Albrecht C, Peluso JJ, and Wehling M. Involvement of let- 7/miR-98 microRNAs in the regulation of progesterone receptor membrane component 1 expression in ovarian cancer cells. Oncology Reports, 2010, 25(1):273–9. DOI: 10.3892/or_00001071 22

    Article  Google Scholar 

  139. Kim Y-W, Kim EY, Jeon D, Liu J-L, Kim HS, Choi JW, et al. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. Drug Design, Development and Therapy, 2014, 8:293. DOI: 10.2147/dddt.s51969 22

    Google Scholar 

  140. Zong C, Wang J, and Shi T-M. MicroRNA 130b enhances drug resistance in human ovarian cancer cells. Tumor Biology, 2014, 35(12):12151–6. DOI: 10.1007/s13277–014–2520–x 22

    Article  Google Scholar 

  141. Shen DY, Zhang W, Zeng X, and Liu CQ.Inhibition of Wnt/β-catenin signaling down-regulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Science, 2013, 104(10):1303–8. DOI: 10.1111/cas.12223 22

    Article  Google Scholar 

  142. Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, and Patel T The Mi- croRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. Journal of Biological Chemistry, 2007, 282(11):8256–64. DOI: 10.1074/jbc.m607712200 22

    Article  Google Scholar 

  143. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 2006, 130(7):2113–29. DOI: 10.1053/j.gastro.2006.02.057 22

    Article  Google Scholar 

  144. Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ, et al. Mcl- 1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Research, 2004, 64(10):3517–24. DOI: 10.1158/0008–5472.can–03–2770 22

    Article  Google Scholar 

  145. Mott JL, Kobayashi S, Bronk SF, and Gores GJ. MiR-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 2007, 26(42):6133–40. DOI: 10.1038/sj.onc.1210436 22

    Article  Google Scholar 

  146. Okamoto K, Miyoshi K, and Murawaki Y. MiR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PloS One, 2013, 8(10):e77623. DOI: 10.1371/journal.pone.0077623 22

    Article  Google Scholar 

  147. Raza U, Zhang JD, and Şahin Ö. MicroRNAs: Master regulators of drug resistance, stemness, and metastasis. Journal of Molecular Medicine, 2014, 92(4):321–36. DOI: 10.1007/s00109–014–1129–2 22

    Article  Google Scholar 

  148. Mu W, Hu C, Zhang H, Qu Z, Cen J, Qiu Z, et al. MiR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression. Cell Research, 2015, 25(4):477–95. DOI: 10.1038/cr.2015.23 22

    Article  Google Scholar 

  149. Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid- chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials, 2014, 35(14):4333–44. DOI: 10.1016/j.biomaterials.2014.02.006 22

    Article  Google Scholar 

  150. Mittal A, Chitkara D, Behrman SW, and Mahato RI. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials, 2014, 35(25):7077–87. DOI: 10.1016/j.biomaterials.2014.04.053 22

    Article  Google Scholar 

  151. Zhou J-Y, Chen X, Zhao J, Bao Z, Chen X, Zhang P, et al. MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting MET. Cancer Letters, 2014, 351(2):265–71. DOI: 10.1016/j.canlet.2014.06.010

    Article  Google Scholar 

  152. Garofalo M, Di Leva G, Romano G, Nuovo G, Suh S-S, Ngankeu A, et al. MiR–221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 2009, 16(6):498–509. DOI: 10.1016/j.ccr.2009.10.014

    Article  Google Scholar 

  153. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, et al. EGFR and MET receptor tyrosine kinase—altered microRNA expression induces tumorigen- esis and gefitinib resistance in lung cancers. Nature Medicine, 2012, 18(1):74–82. DOI: 10.1038/nm.2577

    Article  Google Scholar 

  154. Jeon Y-J, Middleton J, Kim T, Laganà A, Piovan C, Secchiero P, et al. A set of NF- kBregulated microRNAs induces acquired TRAIL resistance in lung cancer. Proc. of the National Academy of Sciences, 2015, 112(26):E3355–E64.

    Article  Google Scholar 

  155. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon Y-J, Ngankeu A, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigene- sis and gefitinib resistance in lung cancers. Nature Medicine, 2012, 18(1):74–82. DOI: 10.1038/nm.2577

    Article  Google Scholar 

  156. Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, et al. MiR–200c suppresses TGF-β signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. International Journal of Cancer, 2014, 135(6):1356–68. DOI: 10.1002/ijc.28782

    Article  Google Scholar 

  157. He X, Xiao X, Dong L, Wan N, Zhou Z, Deng H, et al. MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumor Biology, 2015, 36(3):2065–75. DOI: 10.1007/s13277–014–2814–z

    Article  Google Scholar 

  158. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C, et al. Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis, 2015, 36(3):355–67. DOI: 10.1093/carcin/bgv006

    Article  Google Scholar 

  159. Zhang Y, Talmon G, and Wang J. MicroRNA–587 antagonizes 5-FU-induced apoptosis and confers drug resistance by regulating PPP2R1B expression in colorectal cancer. Cell Death & Disease, 2015, 6(8):e1845–e. DOI: 10.1038/cddis.2015.200

    Article  Google Scholar 

  160. Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells, 2011, 29(11):1661–71. DOI: 10.1002/stem.741

    Article  Google Scholar 

  161. Chen J, Chen Y, and Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer. Cancer Investigation, 2013, 31(1):17–23. DOI: 10.3109/07357907.2012.743557

    Article  Google Scholar 

  162. Yang H, Kong W, He L, Zhao J-J, O’Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: MiR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research, 2008, 68(2):425–33. DOI: 10.1158/0008- 5472.can–07–2488

    Article  Google Scholar 

  163. Zhu D-X, Zhu W, Fang C, Fan L, Zou Z-J, Wang Y-H, et al. MiR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis, 2012, 33(7):1294–301. DOI: 10.1093/carcin/bgs179

    Article  Google Scholar 

  164. Zhou L, Bai H, Wang C, Wei D, Qin Y, and Xu X. MicroRNA–125b promotes leukemia cell resistance to daunorubicin by inhibiting apoptosis. Molecular Medicine Reports, 2014, 9(5):1909–16. DOI: 10.3892/mmr.2014.2011

    Article  Google Scholar 

  165. Lu F, Zhang J, Ji M, Li P, Du Y, Wang H, et al. MiR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. International Journal of Oncology, 2014, 45(1):383–92. DOI: 10.3892/ijo.2014.2390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mirzaei, H., Rahimian, N., Mirzaei, H.R., Nahand, J.S., Hamblin, M.R. (2022). MicroRNAs in Cancer. In: Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79177-2_2

Download citation

Publish with us

Policies and ethics