Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281–97. DOI: 10.1016/s0092-8674(04)00045-5 1, 2

    Article  Google Scholar 

  2. Lee RC, Feinbaum RL, and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5):843–54. DOI: 10.1016/0092-8674(93)90529-y 1

    Article  Google Scholar 

  3. Bhaskaran M and Mohan M. MicroRNAs: History, biogenesis, and their evolving role in animal development and disease. Veterinary Pathology, 2014, 51(4):759–74. DOI: 10.1177/0300985813502820 1

    Article  Google Scholar 

  4. Wightman B, Ha I, and Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5):855–62. DOI: 10.1016/0092-8674(93)90530-4 1

    Article  Google Scholar 

  5. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, and Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4):659–69. DOI: 10.1016/s1097- 2765(00)80245-2 1, 5

    Article  Google Scholar 

  6. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, BettingerJC, Rougvie AE, etal. The 21- nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772):901–6. DOI: 10.1038/35002607 1

    Article  Google Scholar 

  7. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808):86–9. DOI: 10.1038/35040556 1

    Article  Google Scholar 

  8. Griffiths-Jones S, Saini HK, Van Dongen S, and Enright AJ. MiRBase: Tools for microRNA genomics. Nucleic Acids Research, 2007, 36(suppl_1):D154–D8. DOI: 10.1093/nar/gkm952 2

    Article  Google Scholar 

  9. Griffiths-Jones S. The microRNA registry. Nucleic Acids Research, 2004, 32(suppl_1):D109–D11. DOI: 10.1093/nar/gkh023 2

    Article  Google Scholar 

  10. Lau NC, Lim LP, Weinstein EG, and Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543):858–62. DOI: 10.1126/science.1065062 2

    Article  Google Scholar 

  11. Lagos-Quintana M, Rauhut R, Lendeckel W, and Tuschl T Identification of novel genes coding for small expressed RNAs. Science, 2001, 294(5543):853–8. DOI: 10.1126/sci- ence.1064921 2

    Article  Google Scholar 

  12. Cai X, Hagedorn CH, and Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12):1957-66. DOI: 10.1261/rna.7135204 2

    Article  Google Scholar 

  13. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956):415–9. DOI: 10.1038/nature01957 2

    Article  Google Scholar 

  14. Wahid F, Shehzad A, Khan T, and Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et BiophysicaActa (BBA)—Molecular Cell Research, 2010, 1803(11):1231–43. DOI: 10.1016/j.bbamcr.2010.06.013 2, 3

    Article  Google Scholar 

  15. Denli AM, Tops BB, Plasterk RH, Ketting RF, and Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014):231–5. DOI: 10.1038/nature03049 2

    Article  Google Scholar 

  16. Gregory RI, Yan K-p, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432(7014):235–40. DOI: 10.1038/nature03120 2, 3

    Article  Google Scholar 

  17. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, and Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 2004, 18(24):3016–27. DOI: 10.1101/gad.1262504 2, 3

    Article  Google Scholar 

  18. Han J, Lee Y, Yeom K-H, Nam J-W, Heo I, Rhee J-K, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125(5):887- 901. DOI: 10.1016/j.cell.2006.03.043 2

    Article  Google Scholar 

  19. Heo I, Ha M, Lim J, Yoon M-J, Park J-E, Kwon SC, et al. Mono-uridylation of pre- microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell, 2012, 151(3):521-32. DOI: 10.1016/j.cell.2012.09.022 2

    Article  Google Scholar 

  20. Yi R, Qin Y, Macara IG, and Cullen BR. Exportin-5 mediates the nuclear export of pre- microRNAs and short hairpin RNAs. Genes & Development, 2003, 17(24):3011–6. DOI: 10.1101/gad.1158803 3

    Article  Google Scholar 

  21. Bohnsack MT, Czaplinski K, and Görlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004, 10(2):185–91. DOI: 10.1261/rna.5167604 3

    Article  Google Scholar 

  22. Park J-E, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature, 2011, 475(7355):201–5. DOI: 10.1038/nature10198 3

    Article  Google Scholar 

  23. Bernstein E, Caudy AA, Hammond SM, and Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818):363–6. DOI: 10.1038/35053110 3

    Article  Google Scholar 

  24. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7051):740–4. DOI: 10.1038/nature03868 4

    Article  Google Scholar 

  25. Kim Y-W, Kim EY, Jeon D, Liu J-L, Kim HS, Choi JW, et al. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells. DrugDesign, Development and Therapy, 2014, 8:293. DOI: 10.2147/dddt.s51969 4

    Google Scholar 

  26. Gregory RI, Chendrimada TP, Cooch N, and Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4):631–40. DOI: 10.1016/j.cell.2005.10.022 4

    Article  Google Scholar 

  27. Eulalio A, Behm-Ansmant I, Schweizer D, and Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Molecular and Cellular Biology, 2007, 27(11):3970–81. DOI: 10.1128/mcb.00128-07 4

    Article  Google Scholar 

  28. Lin S and Gregory RI. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015, 15(6):321–33. DOI: 10.1038/nrc3932 5

    Article  Google Scholar 

  29. Pillai RS. MicroRNA function: Multiple mechanisms for a tiny RNA? RNA, 2005, 11(12):1753–61. DOI: 10.1261/rna.2248605 4

    Article  Google Scholar 

  30. Wang Y and Lee CG. MicroRNA and cancer—focus on apoptosis. Journal of Cellular and Molecular Medicine, 2009, 13(1):12–23. DOI: 10.1111/j.1582-4934.2008.00510.x 4

    Article  Google Scholar 

  31. Lee I, Ajay SS, Yook JI, Kim HS, Hong SH, Kim NH, et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Research, 2009, 19(7):1175–83. DOI: 10.1101/gr.089367.108 2, 4

    Article  Google Scholar 

  32. Bracken CP, Scott HS, and Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nature Reviews Genetics, 2016, 17(12):719–32. DOI: 10.1038/nrg.2016.134 4, 5

    Article  Google Scholar 

  33. Ritchie W, Flamant S, and Rasko JE. Predicting microRNA targets and functions: Traps for the unwary. Nature Methods, 2009, 6(6):397–8. DOI: 10.1038/nmeth0609-397 5

    Article  Google Scholar 

  34. Gosline SJ, Gurtan AM, JnBaptiste CK, Bosson A, Milani P, Dalin S, et al. Elucidating microRNA regulatory networks using transcriptional, post-transcriptional, and histone modification measurements. Cell Reports, 2016, 14(2):310–9. DOI: 10.1016/j.celrep.2015.12.031 5

    Article  Google Scholar 

  35. Godard P and Van EyllJ. Pathway analysis from lists of microRNAs: Common pitfalls and alternative strategy. Nucleic Acids Research, 2015, 43(7):3490–7. DOI: 10.1093/nar/gkv249

    Article  Google Scholar 

  36. Cammaerts S, Strazisar M, Dierckx J, Del Favero J, and De Rijk P. MiRVaS: A tool to predict the impact of genetic variants on miRNAs. Nucleic Acids Research, 2016, 44(3):e23–e. DOI: 10.1093/nar/gkv921

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Mirzaei, H., Rahimian, N., Mirzaei, H.R., Nahand, J.S., Hamblin, M.R. (2022). MicroRNA Biogenesis and Function. In: Exosomes and MicroRNAs in Biomedical Science. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-79177-2_1

Download citation

Publish with us

Policies and ethics