Abstract
Domain-specific data face the long-standing challenge of expressing granular knowledge in a structured way, which is fundamental for fostering information retrieval in the context of domain-specific semantic digital libraries. In the art history field, the ICON ontology strives to face such a challenge by providing a model for describing complex iconographical and iconological interpretations of visual artworks with a high level of granularity. Nevertheless, such a detailed model has drawbacks when applied to extensive real-world data. The need for an extension of the ICON ontology emerged during the creation of 1) the Iconology Dataset, a manually curated dataset representing a selection of the interpretations by the art historian Erwin Panofsky, and 2) IICONGRAPH, a knowledge graph (KG) created by re-engineering the iconographic statements of Wikidata and ArCo. In this work, we present the ontology extension made after the experience of creating such diverse resources. The updates cover two distinct aspects. Whereas some features needed a more thorough description, other interventions sought to simplify the ontology to optimize queries. To this end, we present the motivation for such modeling that emerged from the creation of the Iconology Dataset and IICONGRAPH. We evaluate the newly added features through competency questions and in terms of their efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Examples of these types of collections are provided when describing ArCo and Wikidata in Sect. 4.
- 2.
As a way of example, see the collection of resources already using Iconclass https://iconclass.org/help/aboutc.
- 3.
- 4.
The new extension is identified by the number 2.1 in order to underline the conceptual continuity with the aim of the previous ontology, i.e. improve the ontology usability in real-world scenarios by providing simpler means of description.
- 5.
Data dump: https://w3id.org/icon/data. A dashboard with data analysis over the dataset is available at https://iconology-dataset.streamlit.app/.
- 6.
- 7.
dul is the prefix of the Dolce Ontology [11], reused in ICON.
- 8.
The documentation and raw file of each version is listed in the GitHub repository, available at https://github.com/br0ast/ICON.
- 9.
- 10.
This strategy allowed a more efficient information retrieval, avoiding the creation of multiple entities for the singular and plural variations of each form (e.g., in spite of having two subjects “woman” and “women”, only the id for the subject “woman” was created).
- 11.
- 12.
Full documentation of the extension: https://w3id.org/icon/docs/2.1.
- 13.
- 14.
Although the average was aimed at reducing the difference in time retrieval, queries performed at different times return different results. For this reason, all queries were performed in the same session.
References
Baroncini, S., Daquino, M., Tomasi, F.: Modelling art interpretation and meaning. A data model for describing iconology and iconography. AIDAinformazioni 1(1-2), 39–62 (2021), https://www.aidainformazioni.it/index.php/aidainformazioni/article/view/10
Baroncini, S., Daquino, M., Tomasi, F.: Are domain-specific theoretical approaches valuable for the application of new computational methods? The case study of Erwin Panofsky’s artworks interpretations and the semantic web. In: Althage, Melanie / Dröge, Martin / Hiltmann, Torsten / Prinz, Claudia (Hrsg.), Digitale Methoden in der geschichtswissenschaftlichen Praxis: Fachliche Transformationen und ihre epistemologischen Konsequenzen: Konferenzbeiträge der Digital History 2023, Berlin, 23.-26.5.2023, Berlin 2023 (https://doi.org/10.5281/zenodo.8319631). Zenodo, Berlin (Oct 2023). https://doi.org/10.5281/zenodo.8321994
Baroncini, S., Daquino, M., Tomasi, F.: Exploring iconographical and iconological content in semantic data through art historians’ interpretations. In: La memoria digitale. Forme del testo e organizzazione della conoscenza. Atti del XII convegno annuale AIUCD. pp. 9–14. Siena (2023)
Baroncini, S., Sartini, B., van Erp, M., Tomasi, F., Gangemi, A.: Is dc:subject enough? a landscape on iconography and iconology statements of knowledge graphs in the semantic web. Journal of Documentation 79(7), 115–136 (2023). https://doi.org/10.1108/JD-09-2022-0207
Carboni, N., de Luca, L.: Towards a semantic documentation of heritage objects through visual and iconographical representations. International Information & Library Review 49(3), 207–217 (2017). https://doi.org/10.1080/10572317.2017.1353374
Carboni, N., de Luca, L.: An Ontological Approach to the Description of Visual and Iconographical Representations. Heritage 2(2), 1191–1210 (2019), https://doi.org/10.3390/heritage2020078
Carriero, V.A., Gangemi, A., Mancinelli, M.L., Marinucci, L., Nuzzolese, A.G., Presutti, V., Veninata, C.: Arco: The italian cultural heritage knowledge graph. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic Web - ISWC 2019, pp. 36–52. Springer International Publishing, Cham (2019)
Couprie, L.D.: Iconclass: an iconographic classification system. Art Libr. J. 8, 32–49 (1983)
Doerr, M.: The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata. AI Mag. 24(3), 75–92 (2003)
Ehrich, S., Verbeek, C., Zinnen, M., Marx, L., Bembibre, C., Leemans, I.: Nose-first. towards an olfactory gaze for digital art history. In: Carvalho, S., Rocha Souza, R. (eds.) LDK 2021 LDK Workshops and Tutorials 2021. pp. 1–17. CEUR Workshop Proceedings, CEUR-WS.org (2021)
Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with dolce. In: International Conference on Knowledge Engineering and Knowledge Management. pp. 166–181. Springer (2002)
Gaona-García, P.A., Martin-Moncunill, D., Montenegro-Marin, C.E.: Trends and challenges of visual search interfaces in digital libraries and repositories. Electron. Libr. 35(1), 69–98 (2017). https://doi.org/10.1108/el-03-2015-0046
Gartner, R.: Towards an ontology-based iconography. Digital Scholarship in the Humanities 35(1), 43–53 (2020). https://doi.org/10.1093/llc/fqz009
Gonçalves, M.A., Moreira, B.L., Fox, E.A., Watson, L.T.: “what is a good digital library?” - a quality model for digital libraries. Information Processing & Management 43(5), 1416–1437 (Sep2007). https://doi.org/10.1016/j.ipm.2006.11.010
Harpring, P.: Development of the getty vocabularies: Aat, tgn, ulan, and cona. Art Documentation: Journal of the Art Libraries Society of North America 29(1), 67–72 (2010), http://www.jstor.org/stable/27949541
Hickey, T.B., Toves, J.A.: Managing ambiguity in viaf. D-lib Magazine 20(7/8) (2014)
Kamposiori, C., Warwick, C., Mahony, S.: Accessing and Using Digital Libraries in Art History. In: Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesińska, A. (eds.) Digital Research and Education in Architectural Heritage. pp. 83–101. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-76992-9_6
Kruk, S.R., McDaniel, B. (eds.): Semantic Digital Libraries. Springer Berlin Heidelberg (2009).https://doi.org/10.1007/978-3-540-85434-0
Leo, L.: On the developments of the iconographic file authority: New research perspectives. Environmental Sciences Proceedings 10(1) (2021). https://doi.org/10.3390/environsciproc2021010013, https://www.mdpi.com/2673-4931/10/1/13
Marinescu, M.C., Reshetnikov, A., Lopez, J.M.: Improving object detection in paintings based on time contexts. In: 2020 International Conference on Data Mining Workshops (ICDMW). IEEE (Nov 2020). https://doi.org/10.1109/icdmw51313.2020.00133
Noah, S.A., Alias, N.A.R., Osman, N.A., Abdullah, Z., Omar, N., Yahya, Y., Yusof, M.M.: Ontology-Driven Semantic Digital Library, p. 141-150. Springer Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-642-17187-1_13
Osman, N.A., Noah, S.A.M., Omar, N.: Semantic search in digital library semantic technology. In: 2010 International Symposium on Information Technology. vol. 3, pp. 1504–1507 (2010).https://doi.org/10.1109/ITSIM.2010.5561476
Pan, Z.: Optimization of information retrieval algorithm for digital library based on semantic search engine. In: 2020 International Conference on Computer Engineering and Application (ICCEA). pp. 364–367 (2020). https://doi.org/10.1109/ICCEA50009.2020.00085
Panofsky, E.: Meaning in the Visual Arts: papers in and on Art History. Doubleday Anchor book, 59, Anchor Books, New York (1955)
Panofsky, E.: Renaissance and Renascenses in Western art. Harper & Row, New York (1969), https://www.worldcat.org/title/1091911205
Panofsky, E.: Studies in iconology: humanistic themes in the art of the Renaissance. Westview Press, Boulder, Colo (1972)
Panofsky, E., Saxl, F.: Classical Mythology in Mediaeval Art. Metrop. Mus. Stud. 4(2), 228–280 (1933)
Pavlova-Draganova, L., Paneva-Marinova, D., Pavlov, R., Goynov, M.: On the Wider Accessibility of the Valuable Phenomena of Orthodox Iconography through Digital Library. In: International Conference dedicated on Digital Heritage (Nov 2010)
Peroni, S., Shotton, D., Vitali, F.: Scholarly Publishing and Linked Data: Describing Roles, Statuses, Temporal and Contextual Extents. In: Proceedings of the 8th International Conference on Semantic Systems. p. 9-16. I-SEMANTICS ’12, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2362499.2362502
Sartini, B.: IICONGRAPH: Improved iconographic and iconological statements in knowledge graphs. In: Meroño Peñuela, A., Dimou, A., Troncy, R., Hartig, O., Acosta, M., Alam, M., Paulheim, H., Lisena, P. (eds.) The Semantic Web. pp. 57–74. Springer Nature Switzerland, Cham (2024). https://doi.org/10.1007/978-3-031-60635-9_4
Sartini, B., Baroncini, S.: A comparative study of simple and complex art interpretations in linked open data using icon ontology. In: Proceedings of the International Workshop on Semantic Web and Ontology Design for Cultural Heritage co-located with the International Semantic Web Conference 2023 (ISWC 2023). CEUR Workshop (nov 2023), https://ceur-ws.org/Vol-3540/paper4.pdf
Sartini, B., Baroncini, S., van Erp, M., Tomasi, F., Gangemi, A.: Icon: An ontology for comprehensive artistic interpretations. J. Comput. Cult. Herit. 16(3) (aug 2023).https://doi.org/10.1145/3594724
Sartini, B., van Erp, M., Gangemi, A.: Marriage is a peach and a chalice: Modelling cultural symbolism on the semantic web. In: Proceedings of the 11th on Knowledge Capture Conference. p. 201-208. K-CAP ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3460210.3493552
Shotton, D.: Cito, the citation typing ontology. In: Journal of biomedical semantics. vol. 1, pp. 1–18. Springer (2010)
Sofia Baroncini: Diving Into Artworks Interpretations through the Lenses of Semantic Data: an application on Panofsky’s Iconological Studies. PhD thesis, University of Bologna, Bologna (2024)
Solomou, G., Koutsomitropoulos, D.: Towards an evaluation of semantic searching in digital repositories: a dspace case-study. Program 49(1), 63–90 (2015). https://doi.org/10.1108/prog-07-2013-0037
Vrandečić, D., Krötzsch, M.: Wikidata: A free collaborative knowledgebase. Commun. ACM 57(10), 78-85 (sep 2014). https://doi.org/10.1145/2629489
Waal, H.: Iconclass: an iconographic classification system. North-Holland Publishing Company (1973)
Acknowledgments
The authors confirm the contribution to the paper as follows: study conception and design: Baroncini, Sartini; ontology design: Baroncini, Sartini; ontology testing: Baroncini; draft manuscript preparation: Baroncini, Sartini. All authors reviewed the results and approved the final version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baroncini, S., Sartini, B. (2024). Improving Retrieval and Expression of Iconographical and Iconological Semantic Statements: An Extension of the ICON Ontology. In: Antonacopoulos, A., et al. Linking Theory and Practice of Digital Libraries. TPDL 2024. Lecture Notes in Computer Science, vol 15177. Springer, Cham. https://doi.org/10.1007/978-3-031-72437-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-72437-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72436-7
Online ISBN: 978-3-031-72437-4
eBook Packages: Computer ScienceComputer Science (R0)