Skip to main content

DaNCES: A Framework for Data-inspired Agent-Based Models of Collective Escape

  • Conference paper
  • First Online:
From Animals to Animats 17 (SAB 2024)

Abstract

The collective escape of predators by prey is a classic example of adaptive behavior in animal groups. Across species, prey has evolved a large repertoire of individual evasive maneuvers they can use to evade predators. With recent technological advances, more empirical data of collective escape is becoming available, and a large variation in the collective dynamics of different species is apparent. However, given the complexity of patterns of collective escape, we are still lacking the tools to understand their emergence. Computational models that can link rules of individual behavior to patterns of collective escape are needed, but species-specific motion and escape characteristics that will allow the link between behavior and eco-evolutionary dynamics of a given species are rarely included in agent-based models of collective behavior. Here, to tackle this challenge, we introduce a framework that uses individual-based state machines to model spatio-temporal dynamics of collective escape. A synthetic agent in our framework can switch its behavior between ‘flocking’ with different coordination specifics (e.g., quicker interactions when vigilant) and ‘escape’ with various maneuvers through a dynamic Markov-chain, depending on its local information (e.g., its relative position to the predator). A user can compose a new agent-based model adjusted to empirical data by choosing a set of states (which includes rules of motion, interaction, and escape), their temporal order, and a detailed parameterization. The flexibility and structure of our software allows substantial changes in a model with very minimal code alterations, showing great potential for future use to identify the underlying mechanisms of collective escape across species and ecological contexts.

Supported by the Netherlands Organization for Scientific Research (NWO), project 14723 awarded to CKH: “Preventing bird strikes: Developing RoboFalcons to deter bird flocks.".

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelani, L.: Collective predation and escape strategies. Phys. Rev. Lett. 109(11), 1–5 (2012). https://doi.org/10.1103/PhysRevLett.109.118104

    Article  Google Scholar 

  2. Bode, N.W., Faria, J.J., Franks, D.W., Krause, J., Wood, A.J.: How perceived threat increases synchronization in collectively moving animal groups. Proc. R. Soc. B Biol. Sci. 277(1697), 3065–3070 (2010)

    Article  Google Scholar 

  3. Carere, C., Montanino, S., Moreschini, F., Zoratto, F., Chiarotti, F., Santucci, D., Alleva, E.: Aerial flocking patterns of wintering starlings, Sturnus vulgaris, under different predation risk. Anim. Behav. 77(1), 101–107 (2009)

    Article  Google Scholar 

  4. Cornut, O.: Dear imgui: Bloat-free graphical user interface for c++ with minimal dependencies (2024). https://github.com/ocornut/imgui

  5. Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003)

    Article  Google Scholar 

  6. Domenici, P.: Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior. J. Exp. Zool. Part A Ecol. Genet. Physiol. 313(2), 59–79 (2010)

    Google Scholar 

  7. Domenici, P., Blagburn, J.M., Bacon, J.P.: Animal escapology I: theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214(15), 2463–2473 (2011). https://doi.org/10.1242/jeb.029652

    Article  Google Scholar 

  8. Doran, C., et al.: Fish waves as emergent collective antipredator behavior. Curr. Biol. 32(3), 708–714 (2022). https://doi.org/10.1016/j.cub.2021.11.068

  9. Gamma, E., Helm, R., Johnson, R., Johnson, R., Vlissides, J.: Design patterns : elements of reusable object-oriented software. Pearson Deutschland GmbH (1995)

    Google Scholar 

  10. Grimm, V., et al.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987–991 (2005). https://doi.org/10.1126/science.1116681

    Article  Google Scholar 

  11. Gyllingberg, L., Szorkovszky, A., Sumpter, D.J.: Using neuronal models to capture burst-and-glide motion and leadership in fish. J. R. Soc. Interface 20(204), 20230212 (2023)

    Article  Google Scholar 

  12. Hansen, M.J., Domenici, P., Bartashevich, P., Burns, A., Krause, J.: Mechanisms of group-hunting in vertebrates. Biol. Rev. 98(5), 1687–1711 (2023)

    Article  Google Scholar 

  13. Hemelrijk, C.K., Hildenbrandt, H.: Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2(6), 726–737 (2012)

    Article  Google Scholar 

  14. Hemelrijk, C.K., van Zuidam, L., Hildenbrandt, H.: What underlies waves of agitation in starling flocks. Behav. Ecol. Sociobiol. 69(5), 755–764 (2015)

    Article  Google Scholar 

  15. Herbert-Read, J.E., Buhl, J., Hu, F., Ward, A.J.W., Sumpter, D.J.: Initiation and spread of escape waves within animal groups. Royal Soc. Open Sci. 2(4), 140355–140355 (2015). https://doi.org/10.1098/rsos.140355

    Article  Google Scholar 

  16. Herbert-Read, J.E., et al.: How predation shapes the social interaction rules of shoaling fish. Proc. Roy. Soc. B Biol. Sci. 284, 1861 (2017)

    Google Scholar 

  17. Herbert-Read, J.E., Ward, A.J.W., Sumpter, D.J., Mann, R.P.: Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer). J. Exp. Biol. 220(11), 2076–2081 (2017)

    Google Scholar 

  18. Hildenbrandt, H., Carere, C., Hemelrijk, C.K.: Self-organized aerial displays of thousands of starlings: a model. Behav. Ecol. 21(6), 1349–1359 (2010)

    Article  Google Scholar 

  19. Inada, Y., Kawachi, K.: Order and flexibility in the motion of fish schools. J. Theor. Biol. 214(3), 371–387 (2002)

    Article  Google Scholar 

  20. Jolles, J.W., King, A.J., Killen, S.S.: The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35(3), 278–291 (2020). https://doi.org/10.1016/j.tree.2019.11.001

    Article  Google Scholar 

  21. Jones, K.A., Jackson, A.L., Ruxton, G.D.: Prey jitters; protean behaviour in grouped prey. Behav. Ecol. 22, 831–836 (2011)

    Article  Google Scholar 

  22. Mills, R., Hildenbrandt, H., Taylor, G.K., Hemelrijk, C.K.: Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey. PLoS Comput. Biol. 14(4), 1–38 (2018). https://doi.org/10.1371/journal.pcbi.1006044

    Article  Google Scholar 

  23. Papadopoulou, M., et al.: Dynamics of collective motion across time and species. Philos. Trans. R. Soc. B 378(1874), 20220068 (2023)

    Article  Google Scholar 

  24. Papadopoulou, M., Hildenbrandt, H.: DaNCES framework (2024). https://github.com/marinapapa/DaNCES_framework

  25. Papadopoulou, M., Hildenbrandt, H., Hemelrijk, C.K.: Diffusion during collective turns in bird flocks under predation. Front. Ecol. Evol. 11, 1198248 (2023)

    Article  Google Scholar 

  26. Papadopoulou, M., Hildenbrandt, H., Sankey, D.W.E., Portugal, S.J., Hemelrijk, C.K.: Emergence of splits and collective turns in pigeon flocks under predation. Roy. Soc. Open Sci. 9, 211898 (2022)

    Article  Google Scholar 

  27. Papadopoulou, M., Hildenbrandt, H., Sankey, D.W.E., Portugal, S.J., Hemelrijk, C.K.: Self-organization of collective escape in pigeon flocks. PLoS Comput. Biol. 18(1), e1009772 (2022). https://doi.org/10.1371/journal.pcbi.1009772

    Article  Google Scholar 

  28. Papadopoulou, M., Hildenbrandt, H., Storms, R., Hemelrijk, C.K.: Starling murmurations under predation. In prep. (2024)

    Google Scholar 

  29. Pettit, B., Perna, A., Biro, D., Sumpter, D.J.: Interaction rules underlying group decisions in homing pigeons. J. Roy. Soc. Interface 10(89), 20130529 (2013)

    Google Scholar 

  30. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406

    Article  Google Scholar 

  31. Sankey, D.W., Shepard, E.L., Biro, D., Portugal, S.J.: Speed consensus and the ‘Goldilocks principle’ in flocking birds (Columba livia). Anim. Behav. 157, 105–119 (2019). https://doi.org/10.1016/j.anbehav.2019.09.001

    Article  Google Scholar 

  32. Sankey, D.W., Storms, R.F., Musters, R.J., Russell, T.W., Hemelrijk, C.K., Portugal, S.J.: Absence of “selfish herd” dynamics in bird flocks under threat. Curr. Biol. 31(14), 3192-3198.e7 (2021). https://doi.org/10.1016/j.cub.2021.05.009

  33. Storms, R.F., Carere, C., Musters, R., Van Gasteren, H., Verhulst, S., Hemelrijk, C.K.: Deterrence of birds with an artificial predator, the robotfalcon. J. R. Soc. Interface 19(195), 20220497 (2022)

    Article  Google Scholar 

  34. Storms, R.F., Carere, C., Zoratto, F., Hemelrijk, C.K.: Complex collective motion: collective escape patterns of starling flocks under predation. Behav. Ecol. Sociobiol. 73, 10 (2019). https://doi.org/10.1007/s00265-018-2609-0

  35. Thiebault, A., Semeria, M., Lett, C., Tremblay, Y.: How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85(1), 157–167 (2016). https://doi.org/10.1111/1365-2656.12455

    Article  Google Scholar 

  36. Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013). https://doi.org/10.1371/journal.pcbi.1002915

  37. Wilson, A.D., et al.: Dynamic social networks in guppies (poecilia reticulata). Behav. Ecol. Sociobiol. 68(6), 915–925 (2014)

    Article  Google Scholar 

  38. Zheng, M., Kashimori, Y., Hoshino, O., Fujita, K., Kambara, T.: Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. J. Theor. Biol. 235(2), 153–167 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Papadopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Papadopoulou, M., Hildenbrandt, H., Hemelrijk, C.K. (2025). DaNCES: A Framework for Data-inspired Agent-Based Models of Collective Escape. In: Brock, O., Krichmar, J. (eds) From Animals to Animats 17. SAB 2024. Lecture Notes in Computer Science(), vol 14993. Springer, Cham. https://doi.org/10.1007/978-3-031-71533-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71533-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71532-7

  • Online ISBN: 978-3-031-71533-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics