Abstract
The collective escape of predators by prey is a classic example of adaptive behavior in animal groups. Across species, prey has evolved a large repertoire of individual evasive maneuvers they can use to evade predators. With recent technological advances, more empirical data of collective escape is becoming available, and a large variation in the collective dynamics of different species is apparent. However, given the complexity of patterns of collective escape, we are still lacking the tools to understand their emergence. Computational models that can link rules of individual behavior to patterns of collective escape are needed, but species-specific motion and escape characteristics that will allow the link between behavior and eco-evolutionary dynamics of a given species are rarely included in agent-based models of collective behavior. Here, to tackle this challenge, we introduce a framework that uses individual-based state machines to model spatio-temporal dynamics of collective escape. A synthetic agent in our framework can switch its behavior between ‘flocking’ with different coordination specifics (e.g., quicker interactions when vigilant) and ‘escape’ with various maneuvers through a dynamic Markov-chain, depending on its local information (e.g., its relative position to the predator). A user can compose a new agent-based model adjusted to empirical data by choosing a set of states (which includes rules of motion, interaction, and escape), their temporal order, and a detailed parameterization. The flexibility and structure of our software allows substantial changes in a model with very minimal code alterations, showing great potential for future use to identify the underlying mechanisms of collective escape across species and ecological contexts.
Supported by the Netherlands Organization for Scientific Research (NWO), project 14723 awarded to CKH: “Preventing bird strikes: Developing RoboFalcons to deter bird flocks.".
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Angelani, L.: Collective predation and escape strategies. Phys. Rev. Lett. 109(11), 1–5 (2012). https://doi.org/10.1103/PhysRevLett.109.118104
Bode, N.W., Faria, J.J., Franks, D.W., Krause, J., Wood, A.J.: How perceived threat increases synchronization in collectively moving animal groups. Proc. R. Soc. B Biol. Sci. 277(1697), 3065–3070 (2010)
Carere, C., Montanino, S., Moreschini, F., Zoratto, F., Chiarotti, F., Santucci, D., Alleva, E.: Aerial flocking patterns of wintering starlings, Sturnus vulgaris, under different predation risk. Anim. Behav. 77(1), 101–107 (2009)
Cornut, O.: Dear imgui: Bloat-free graphical user interface for c++ with minimal dependencies (2024). https://github.com/ocornut/imgui
Couzin, I.D., Krause, J.: Self-organization and collective behavior in vertebrates. Adv. Study Behav. 32, 1–75 (2003)
Domenici, P.: Context-dependent variability in the components of fish escape response: integrating locomotor performance and behavior. J. Exp. Zool. Part A Ecol. Genet. Physiol. 313(2), 59–79 (2010)
Domenici, P., Blagburn, J.M., Bacon, J.P.: Animal escapology I: theoretical issues and emerging trends in escape trajectories. J. Exp. Biol. 214(15), 2463–2473 (2011). https://doi.org/10.1242/jeb.029652
Doran, C., et al.: Fish waves as emergent collective antipredator behavior. Curr. Biol. 32(3), 708–714 (2022). https://doi.org/10.1016/j.cub.2021.11.068
Gamma, E., Helm, R., Johnson, R., Johnson, R., Vlissides, J.: Design patterns : elements of reusable object-oriented software. Pearson Deutschland GmbH (1995)
Grimm, V., et al.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987–991 (2005). https://doi.org/10.1126/science.1116681
Gyllingberg, L., Szorkovszky, A., Sumpter, D.J.: Using neuronal models to capture burst-and-glide motion and leadership in fish. J. R. Soc. Interface 20(204), 20230212 (2023)
Hansen, M.J., Domenici, P., Bartashevich, P., Burns, A., Krause, J.: Mechanisms of group-hunting in vertebrates. Biol. Rev. 98(5), 1687–1711 (2023)
Hemelrijk, C.K., Hildenbrandt, H.: Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2(6), 726–737 (2012)
Hemelrijk, C.K., van Zuidam, L., Hildenbrandt, H.: What underlies waves of agitation in starling flocks. Behav. Ecol. Sociobiol. 69(5), 755–764 (2015)
Herbert-Read, J.E., Buhl, J., Hu, F., Ward, A.J.W., Sumpter, D.J.: Initiation and spread of escape waves within animal groups. Royal Soc. Open Sci. 2(4), 140355–140355 (2015). https://doi.org/10.1098/rsos.140355
Herbert-Read, J.E., et al.: How predation shapes the social interaction rules of shoaling fish. Proc. Roy. Soc. B Biol. Sci. 284, 1861 (2017)
Herbert-Read, J.E., Ward, A.J.W., Sumpter, D.J., Mann, R.P.: Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer). J. Exp. Biol. 220(11), 2076–2081 (2017)
Hildenbrandt, H., Carere, C., Hemelrijk, C.K.: Self-organized aerial displays of thousands of starlings: a model. Behav. Ecol. 21(6), 1349–1359 (2010)
Inada, Y., Kawachi, K.: Order and flexibility in the motion of fish schools. J. Theor. Biol. 214(3), 371–387 (2002)
Jolles, J.W., King, A.J., Killen, S.S.: The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35(3), 278–291 (2020). https://doi.org/10.1016/j.tree.2019.11.001
Jones, K.A., Jackson, A.L., Ruxton, G.D.: Prey jitters; protean behaviour in grouped prey. Behav. Ecol. 22, 831–836 (2011)
Mills, R., Hildenbrandt, H., Taylor, G.K., Hemelrijk, C.K.: Physics-based simulations of aerial attacks by peregrine falcons reveal that stooping at high speed maximizes catch success against agile prey. PLoS Comput. Biol. 14(4), 1–38 (2018). https://doi.org/10.1371/journal.pcbi.1006044
Papadopoulou, M., et al.: Dynamics of collective motion across time and species. Philos. Trans. R. Soc. B 378(1874), 20220068 (2023)
Papadopoulou, M., Hildenbrandt, H.: DaNCES framework (2024). https://github.com/marinapapa/DaNCES_framework
Papadopoulou, M., Hildenbrandt, H., Hemelrijk, C.K.: Diffusion during collective turns in bird flocks under predation. Front. Ecol. Evol. 11, 1198248 (2023)
Papadopoulou, M., Hildenbrandt, H., Sankey, D.W.E., Portugal, S.J., Hemelrijk, C.K.: Emergence of splits and collective turns in pigeon flocks under predation. Roy. Soc. Open Sci. 9, 211898 (2022)
Papadopoulou, M., Hildenbrandt, H., Sankey, D.W.E., Portugal, S.J., Hemelrijk, C.K.: Self-organization of collective escape in pigeon flocks. PLoS Comput. Biol. 18(1), e1009772 (2022). https://doi.org/10.1371/journal.pcbi.1009772
Papadopoulou, M., Hildenbrandt, H., Storms, R., Hemelrijk, C.K.: Starling murmurations under predation. In prep. (2024)
Pettit, B., Perna, A., Biro, D., Sumpter, D.J.: Interaction rules underlying group decisions in homing pigeons. J. Roy. Soc. Interface 10(89), 20130529 (2013)
Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM Comput. Graph. 21(4), 25–34 (1987). https://doi.org/10.1145/37402.37406
Sankey, D.W., Shepard, E.L., Biro, D., Portugal, S.J.: Speed consensus and the ‘Goldilocks principle’ in flocking birds (Columba livia). Anim. Behav. 157, 105–119 (2019). https://doi.org/10.1016/j.anbehav.2019.09.001
Sankey, D.W., Storms, R.F., Musters, R.J., Russell, T.W., Hemelrijk, C.K., Portugal, S.J.: Absence of “selfish herd” dynamics in bird flocks under threat. Curr. Biol. 31(14), 3192-3198.e7 (2021). https://doi.org/10.1016/j.cub.2021.05.009
Storms, R.F., Carere, C., Musters, R., Van Gasteren, H., Verhulst, S., Hemelrijk, C.K.: Deterrence of birds with an artificial predator, the robotfalcon. J. R. Soc. Interface 19(195), 20220497 (2022)
Storms, R.F., Carere, C., Zoratto, F., Hemelrijk, C.K.: Complex collective motion: collective escape patterns of starling flocks under predation. Behav. Ecol. Sociobiol. 73, 10 (2019). https://doi.org/10.1007/s00265-018-2609-0
Thiebault, A., Semeria, M., Lett, C., Tremblay, Y.: How to capture fish in a school? Effect of successive predator attacks on seabird feeding success. J. Anim. Ecol. 85(1), 157–167 (2016). https://doi.org/10.1111/1365-2656.12455
Tunstrøm, K., Katz, Y., Ioannou, C.C., Huepe, C., Lutz, M.J., Couzin, I.D.: Collective states, multistability and transitional behavior in schooling fish. PLoS Comput. Biol. 9(2), e1002915 (2013). https://doi.org/10.1371/journal.pcbi.1002915
Wilson, A.D., et al.: Dynamic social networks in guppies (poecilia reticulata). Behav. Ecol. Sociobiol. 68(6), 915–925 (2014)
Zheng, M., Kashimori, Y., Hoshino, O., Fujita, K., Kambara, T.: Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation. J. Theor. Biol. 235(2), 153–167 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Papadopoulou, M., Hildenbrandt, H., Hemelrijk, C.K. (2025). DaNCES: A Framework for Data-inspired Agent-Based Models of Collective Escape. In: Brock, O., Krichmar, J. (eds) From Animals to Animats 17. SAB 2024. Lecture Notes in Computer Science(), vol 14993. Springer, Cham. https://doi.org/10.1007/978-3-031-71533-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-71533-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71532-7
Online ISBN: 978-3-031-71533-4
eBook Packages: Computer ScienceComputer Science (R0)