Skip to main content

Fair Division of Chores with Budget Constraints

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15156))

Included in the following conference series:

  • 187 Accesses

Abstract

We study fair allocation of indivisible chores to agents under budget constraints, where each chore has an objective size and disutility. This model captures scenarios where a set of chores need to be divided among agents with limited time, and each chore has a specific time needed for completion. We propose a budget-constrained model for allocating indivisible chores, and systematically explore the differences between goods and chores in this setting. We establish the existence of an EFX allocation. We then show that EF2 allocations are polynomial-time computable in general; for many restricted settings, we strengthen this result to EF1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Airiau, S., Gilbert, H., Grandi, U., Lang, J., Wilczynski, A.: Fair rent division on a budget revisited. In: Proceedings of the 26th European Conference on Artificial Intelligence (ECAI), pp. 52–59 (2023)

    Google Scholar 

  2. Amanatidis, G., et al.: Fair division of indivisible goods: recent progress and open questions. Artif. Intell. 322, 103965 (2023)

    Article  MathSciNet  Google Scholar 

  3. Aziz, H., Caragiannis, I., Igarashi, A., Walsh, T.: Fair allocation of indivisible goods and chores. Auton. Agents Multi-Agent Syst. 36(1), 3:1–3:21 (2022)

    Google Scholar 

  4. Aziz, H., Li, B., Moulin, H., Wu, X.: Algorithmic fair allocation of indivisible items: a survey and new questions. SIGecom Exchanges 20(1), 24–40 (2022)

    Article  Google Scholar 

  5. Barman, S., Khan, A., Shyam, S., Sreenivas, K.V.N.: Guaranteeing envy-freeness under generalized assignment constraints. In: Proceedings of the 24th ACM Conference on Economics and Computation (EC), pp. 242–269 (2023)

    Google Scholar 

  6. Barman, S., Khan, A., Shyam, S., Sreenivas, K.: Finding fair allocations under budget constraints. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI), pp. 5481–5489 (2023)

    Google Scholar 

  7. Barman, S., Sundaram, R.G.: Uniform welfare guarantees under identical subadditive valuations. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI), pp. 46–52 (2020)

    Google Scholar 

  8. Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaya, E.: Competitive division of a mixed manna. Econometrica 85(6), 1847–1871 (2017)

    Article  MathSciNet  Google Scholar 

  9. Brams, S.J., Taylor, A.D.: Fair Division: From cake-cutting to dispute resolution. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  10. Budish, E.: The combinatorial assignment problem: approximate competitive equilibrium from equal incomes. J. Polit. Econ. 119(6), 1061–1103 (2011)

    Article  Google Scholar 

  11. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The unreasonable fairness of maximum Nash welfare. ACM Trans. Econ. Comput. 7(3), 12:1–12:32 (2019)

    Google Scholar 

  12. Chaudhury, B.R., Kavitha, T., Mehlhorn, K., Sgouritsa, A.: A little charity guarantees almost envy-freeness. SIAM J. Comput. 50(4), 1336–1358 (2021)

    Article  MathSciNet  Google Scholar 

  13. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35(3), 713–728 (2005)

    Article  MathSciNet  Google Scholar 

  14. Dehghani, S., Farhadi, A., HajiAghayi, M., Yami, H.: Envy-free chore division for an arbitrary number of agents. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2564–2583 (2018)

    Google Scholar 

  15. Gan, J., Li, B., Wu, X.: Approximation algorithm for computing budget-feasible EF1 allocations. In: Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 170–178 (2023)

    Google Scholar 

  16. Garbea, M., Gkatzelis, V., Tan, X.: EFx budget-feasible allocations with high Nash welfare. In: Proceedings of the 26th European Conference on Artificial Intelligence (ECAI), pp. 795–802 (2023)

    Google Scholar 

  17. Ghosal, P., Vishwa Prakash, H.V., Nimbhorkar, P., Varma, N.: EFX exists for four agents with three types of valuations. arXiv preprint arXiv:2301.10632 (2023)

  18. Igarashi, A., Lackner, M., Nardi, O., Novaro, A.: Repeated fair allocation of indivisible items. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), pp. 9781–9789 (2024)

    Google Scholar 

  19. Igarashi, A., Yokoyama, T.: Kajibuntan: a house chore division app. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI), pp. 16449–16451 (2023)

    Google Scholar 

  20. Mutzari, D., Aumann, Y., Kraus, S.: Resilient fair allocation of indivisible goods. In: Proceedings of the 22nd International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 2688–2690 (2023)

    Google Scholar 

  21. Plaut, B., Roughgarden, T.: Almost envy-freeness with general valuations. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2584–2603 (2018)

    Google Scholar 

  22. Procaccia, A., Velez, R., Yu, D.: Fair rent division on a budget. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pp. 1177–1184 (2018)

    Google Scholar 

  23. Steinhaus, H.: The problem of fair division. Econometrica 16(1), 101–104 (1948)

    Google Scholar 

  24. Wu, X., Li, B., Gan, J.: Budget-feasible maximum Nash social welfare is almost envy-free. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI), pp. 465–471 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Teh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elkind, E., Igarashi, A., Teh, N. (2024). Fair Division of Chores with Budget Constraints. In: Schäfer, G., Ventre, C. (eds) Algorithmic Game Theory. SAGT 2024. Lecture Notes in Computer Science, vol 15156. Springer, Cham. https://doi.org/10.1007/978-3-031-71033-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71033-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71032-2

  • Online ISBN: 978-3-031-71033-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics