Skip to main content

The Team Order Problem: Maximizing the Probability of Matching Being Large Enough

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15156))

Included in the following conference series:

  • 123 Accesses

Abstract

We consider a matching problem, which is meaningful in team competitions, as well as in information theory, recommender systems, and assignment problems. In the competitions which we study, each competitor in a team order plays a match with the corresponding opposing player. The team that wins more matches wins. We consider a problem where the input is the graph of probabilities that a team 1 player can win against the team 2 player, and the output is the optimal ordering of team 1 players given the fixed ordering of team 2. Our central result is a polynomial-time approximation scheme (PTAS) to compute a matching whose winning probability is at most \(\varepsilon \) less than the winning probability of the optimal matching. We also provide tractability results for several special cases of the problem, as well as an analytical bound on how far the winning probability of a maximum weight matching of the underlying graph is from the best achievable winning probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A PTAS is a scheme which, for every instance of a problem and \(\varepsilon >0\), provides an approximate solution based on \(\varepsilon \).

  2. 2.

    A vector x is leximin-greater than a vector y if x and y are in non-decreasing order and x is lexicographically greater than y.

References

  1. Ehm, W.: Binomial approximation to the Poisson binomial distribution. Stat. Probab. Lett. 11(1), 7–16 (1991)

    Article  MathSciNet  Google Scholar 

  2. Ahani, N., Gölz, P., Procaccia, A.D., Teytelboym, A., Trapp, A.C.: Dynamic placement in refugee resettlement. In: The 22nd ACM Conference on Economics and Computation, p. 5. ACM (2021)

    Google Scholar 

  3. Allan, B., Omer, L., Nisarg, S., Tyrone, S.: Primarily about primaries. In: The Thirty-Third AAAI Conference on Artificial Intelligence, pp. 1804–1811 (2019)

    Google Scholar 

  4. Aziz, H., Brill, M., Fischer, F., Harrenstein, P., Lang, J., Seedig, H.G.: Possible and necessary winners of partial tournaments. J. Artif. Intell. Res. 54, 493–534 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aziz, H., Gaspers, S., Mackenzie, S., Mattei, N., Stursberg, P., Walsh, T.: Fixing a balanced knockout tournament. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI), pp. 552–558. AAAI Press (2014)

    Google Scholar 

  6. Aziz, H., Biró, P., Gaspers, S., de Haan, R., Mattei, N., Rastegari, B.: Stable matching with uncertain linear preferences. Algorithmica 82, 1410–1433 (2020)

    Article  MathSciNet  Google Scholar 

  7. Bansak, K., et al.: Improving refugee integration through data-driven algorithmic assignment. Science 359(6373), 325–329 (2018)

    Article  Google Scholar 

  8. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Program. 128(1–2), 355–372 (2011)

    Article  MathSciNet  Google Scholar 

  9. Burkhard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)

    Google Scholar 

  10. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  11. Echenique, F., Immorlica, N., Vazirani, V.V.: Online and Matching-Based Market Design. Cambridge University Press, Cambridge (2023)

    Book  Google Scholar 

  12. Faliszewski, P., Gourvès, L., Lang, J., Lesca, J., Monnot, J.: How hard is it for a party to nominate an election winner? In: IJCAI (2016)

    Google Scholar 

  13. Fu, Q., Lu, J.: On equilibrium player ordering in dynamic team contests. Econ. Inq. 58(4), 1830–1844 (2020)

    Article  Google Scholar 

  14. Fu, Q., Lu, J., Pan, Y.: Team contests with multiple pairwise battles. Am. Econ. Rev. 105(7), 2120–40 (2015)

    Article  Google Scholar 

  15. Gaonkar, A., Raghunathan, D., Weinberg, S.M.: The derby game: an ordering-based Colonel Blotto game. In: EC 2022: The 23rd ACM Conference on Economics and Computation, pp. 184–207. ACM (2022)

    Google Scholar 

  16. Geerdes, H.F., Szabó, J.: A unified proof for Karzanov’s exact matching theorem. Technical report QP-2011-02, Egerváry Research Group, Budapest (2011). www.cs.elte.hu/egres

  17. Kern, W., Paulusma, D.: The new FIFA rules are hard: complexity aspects of sports competitions. Discrete Appl. Math. 108(3), 317–323 (2001)

    Article  MathSciNet  Google Scholar 

  18. Konishi, H., Pan, C.Y., Simeonov, D.: Equilibrium player choices in team contests with multiple pairwise battles. Games Econ. Behav. 132, 274–287 (2022)

    Article  MathSciNet  Google Scholar 

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  20. Kuhn, H.W.: The Hungarian method for the assignment problem. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 29–47. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_2

    Chapter  Google Scholar 

  21. Li, J., Convertino, M.: Inferring ecosystem networks as information flows. Sci. Rep. 11(1), 1–22 (2021)

    Google Scholar 

  22. Lisowski, G.: Strategic nominee selection in tournament solutions. In: Baumeister, D., Rothe, J. (eds.) EUMAS 2022. LNCS, vol. 13442, pp. 239–256. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20614-6_14

    Chapter  Google Scholar 

  23. Lisowski, G., Ramanujan, M., Turrini, P.: Equilibrium computation for knockout tournaments played by groups. In: International Conference on Autonomous Agents and Multiagent Systems. AAMAS (2022)

    Google Scholar 

  24. Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing (2009)

    Google Scholar 

  25. Mohamed, M.H., Khafagy, M.H., Ibrahim, M.H.: Recommender systems challenges and solutions survey. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), pp. 149–155. IEEE (2019)

    Google Scholar 

  26. Roberson, B.: The Colonel Blotto game. Econ. Theor. 29(1), 1–24 (2006)

    Article  MathSciNet  Google Scholar 

  27. Shubik, M., Weber, R.J.: Systems defense games: Colonel Blotto, command and control. Cowles Foundation Discussion Papers 489, Cowles Foundation for Research in Economics, Yale University (1978)

    Google Scholar 

  28. Tang, P., Shoham, Y., Lin, F.: Team competition. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 241–248. IFAAMAS (2009)

    Google Scholar 

  29. Tang, W., Tang, F.: The Poisson binomial distribution – old & new (2019)

    Google Scholar 

  30. Vassilevska-Williams, V.: Knockout tournaments. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, chap. 19. Cambridge University Press (2016)

    Google Scholar 

  31. Vu, T., Altman, A., Shoham, Y.: On the complexity of schedule control problems for knockout tournaments. In: AAMAS (2009)

    Google Scholar 

  32. Yi, T., Murty, K.G., Spera, C.: Matchings in colored bipartite networks. Discrete Appl. Math. 121(1–3), 261–277 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF-CSIRO grant on “Fair Sequential Collective Decision-Making” (Grant No. RG230833) and by DSTG under the project “Distributed multi-agent coordination for mobile node placement.” (Grant No. RG233005). This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101002854).

figure f

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Lisowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aziz, H., Gan, J., Lisowski, G., Pourmiri, A. (2024). The Team Order Problem: Maximizing the Probability of Matching Being Large Enough. In: Schäfer, G., Ventre, C. (eds) Algorithmic Game Theory. SAGT 2024. Lecture Notes in Computer Science, vol 15156. Springer, Cham. https://doi.org/10.1007/978-3-031-71033-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71033-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71032-2

  • Online ISBN: 978-3-031-71033-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics