Abstract
In the realm of digital interactions, cyberbullying stands as a significant yet often overlooked concern within scholarly investigations. The presence of hostile online environments not only discourages active participation but can also affect mental well-being. Pinpointing instances of cyberbullying poses a challenge. With the increasing number of platforms facilitating user engagement through comments and feedback, traditional moderation methods prove inadequate. Moreover, the dynamic nature of online interactions necessitates adaptable strategies, as definitions of aggressive behavior continuously evolve. In light of these complexities, this study advocates for a data-driven approach. The potential of leveraging optimization metaheuristics alongside robust classification algorithms and bidirectional encoder representations from transformers encoders for detecting instances of online attacks is explored in this work. AdaBoost hyperparameters are subjected to optimization through established and emergent algorithms, with a modified version of the botox optimization algorithm introduced specifically for the needs of this study. The efficacy of this framework was evaluated using a publicly accessible dataset. The optimized model attained an accuracy rate of 93.39% suggesting the viability of the approach for confronting the escalating challenges posed by cyberbullying.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abualigah, L., Elaziz, M.A., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)
Bacanin, N., et al.: Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Inf. Sci. 642, 119122 (2023)
Bai, J., et al.: A sinh cosh optimizer. Knowl. Based Syst. 282, 111081 (2023)
Basha, J., et al.: Chaotic Harris hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21(19), 6654 (2021)
Brewer, G., Kerslake, J.: Cyberbullying, self-esteem, empathy and loneliness. Comput. Hum. Behav. 48, 255–260 (2015)
Cassidy, W., Faucher, C., Jackson, M.: Cyberbullying among youth: a comprehensive review of current international research and its implications and application to policy and practice. Sch. Psychol. Int. 34(6), 575–612 (2013)
Chowdhary, KR1442., Chowdhary, K.R.: Natural language processing. Fundamentals of artificial intelligence, pp. 603–649 (2020)
Christian, H., Agus, M.P., Suhartono, D.: Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF). ComTech: Comput. Math. Eng. Appl. 7(4), 285–294 (2016)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805
Egeberg, G., Thorvaldsen, S., Rønning, J.A.: The impact of cyberbullying and cyber harassment on academic achievement. In: Digital Expectations and Experiences in Education, pp. 183–204. Brill (2016)
Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 57–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_3
Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)
Hinduja, S., Patchin, J.W.: Bullying, cyberbullying, and suicide. Archives Suicide Res. 14(3), 206–221 (2010)
Hubálovská, M., Hubálovskỳ, Š, Trojovskỳ, P.: Botox optimization algorithm: a new human-based metaheuristic algorithm for solving optimization problems. Biomimetics 9(3), 137 (2024)
Jiang, A.Q., et al.: Mistral 7B (2023). arXiv preprint arXiv:2310.06825
Jovanovic, L., et al.: Long short-term memory tuning by enhanced harris hawks optimization algorithm for crude oil price forecasting (2024)
Jovanovic, L., Bacanin, N., Simic, V., Mani, J., Zivkovic, M., Sarac, M.: Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics. Soft Comput. 1–20 (2023)
Kowalski, R.: Cyberbullying. In: The Routledge International Handbook of Human Aggression, pp. 131–142. Routledge (2018)
Langos, C.: Cyberbullying: the challenge to define. Cyberpsychol. Behav. Soc. Netw. 15(6), 285–289 (2012)
Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, vol. 635, no. 2, pp. 2014 (2013)
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)
Mirjalili, S., Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks: Theory and Applications, pp. 43–55 (2019)
Roumeliotis, K.I., Tselikas, N.D.: ChatGPT and open-AI models: a preliminary review. Future Internet 15(6), 192 (2023)
Salazar, J., Liang, D., Nguyen, T.Q., Kirchhoff, K.: Masked language model scoring (2019). arXiv preprint arXiv:1910.14659
Schapire, R.E.: Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_5
Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP (2019). arXiv preprint arXiv:1906.02243
Subaramaniam, K., Kolandaisamy, R., Jalil, A.B., Kolandaisamy, I.: Cyberbullying challenges on society: a review. J. Positive Sch. Psychol. 6(2), 2174–2184 (2022)
Warrens, M.J.: Five ways to look at Cohen’s kappa. J. Psychol. Psychother. 5, 4 (2015)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Xin-She Yang and Amir Hossein Gandomi: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)
Yoo, J.Y., Qi, Y.: Towards improving adversarial training of NLP models (2021). arXiv preprint arXiv:2109.00544
Yue, X., Di, G., Yueyun, Yu., Wang, W., Shi, H.: Analysis of the combination of natural language processing and search engine technology. Procedia Eng. 29, 1636–1639 (2012)
Zivkovic, M., Jovanovic, L., Ivanovic, M., Bacanin, N., Strumberger, I., Joseph, P.M.: XGBoost hyperparameters tuning by fitness-dependent optimizer for network intrusion detection. In: Sharma, H., Shrivastava, V., Kumari Bharti, K., Wang, L. (eds.) Communication and Intelligent Systems. LNNS, vol. 461, pp. 947–962. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2130-8_74
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jovanovic, L., Bacanin, N., Radomirovic, B., Zivkovic, M., Njegus, A., Antonijevic, M. (2024). Natural Language Processing and AdaBoost Optimized by Modified Metaheuristic for Online Harassment Detection. In: Ragavendiran, S.D.P., Pavaloaia, V.D., Mekala, M.S., Cabezuelo, A.S. (eds) Innovations and Advances in Cognitive Systems. ICIACS 2024. Information Systems Engineering and Management, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-69201-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-69201-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-69200-0
Online ISBN: 978-3-031-69201-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)