Skip to main content

Natural Language Processing and AdaBoost Optimized by Modified Metaheuristic for Online Harassment Detection

  • Conference paper
  • First Online:
Innovations and Advances in Cognitive Systems (ICIACS 2024)

Abstract

In the realm of digital interactions, cyberbullying stands as a significant yet often overlooked concern within scholarly investigations. The presence of hostile online environments not only discourages active participation but can also affect mental well-being. Pinpointing instances of cyberbullying poses a challenge. With the increasing number of platforms facilitating user engagement through comments and feedback, traditional moderation methods prove inadequate. Moreover, the dynamic nature of online interactions necessitates adaptable strategies, as definitions of aggressive behavior continuously evolve. In light of these complexities, this study advocates for a data-driven approach. The potential of leveraging optimization metaheuristics alongside robust classification algorithms and bidirectional encoder representations from transformers encoders for detecting instances of online attacks is explored in this work. AdaBoost hyperparameters are subjected to optimization through established and emergent algorithms, with a modified version of the botox optimization algorithm introduced specifically for the needs of this study. The efficacy of this framework was evaluated using a publicly accessible dataset. The optimized model attained an accuracy rate of 93.39% suggesting the viability of the approach for confronting the escalating challenges posed by cyberbullying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 154.07
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 241.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/datasets/saurabhshahane/cyberbullying-dataset.

References

  1. Abualigah, L., Elaziz, M.A., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)

    Google Scholar 

  2. Bacanin, N., et al.: Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks. Inf. Sci. 642, 119122 (2023)

    Article  Google Scholar 

  3. Bai, J., et al.: A sinh cosh optimizer. Knowl. Based Syst. 282, 111081 (2023)

    Google Scholar 

  4. Basha, J., et al.: Chaotic Harris hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21(19), 6654 (2021)

    Google Scholar 

  5. Brewer, G., Kerslake, J.: Cyberbullying, self-esteem, empathy and loneliness. Comput. Hum. Behav. 48, 255–260 (2015)

    Article  Google Scholar 

  6. Cassidy, W., Faucher, C., Jackson, M.: Cyberbullying among youth: a comprehensive review of current international research and its implications and application to policy and practice. Sch. Psychol. Int. 34(6), 575–612 (2013)

    Article  Google Scholar 

  7. Chowdhary, KR1442., Chowdhary, K.R.: Natural language processing. Fundamentals of artificial intelligence, pp. 603–649 (2020)

    Google Scholar 

  8. Christian, H., Agus, M.P., Suhartono, D.: Single document automatic text summarization using term frequency-inverse document frequency (TF-IDF). ComTech: Comput. Math. Eng. Appl. 7(4), 285–294 (2016)

    Google Scholar 

  9. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

  10. Egeberg, G., Thorvaldsen, S., Rønning, J.A.: The impact of cyberbullying and cyber harassment on academic achievement. In: Digital Expectations and Experiences in Education, pp. 183–204. Brill (2016)

    Google Scholar 

  11. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 57–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_3

    Chapter  Google Scholar 

  12. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Google Scholar 

  13. Hinduja, S., Patchin, J.W.: Bullying, cyberbullying, and suicide. Archives Suicide Res. 14(3), 206–221 (2010)

    Google Scholar 

  14. Hubálovská, M., Hubálovskỳ, Š, Trojovskỳ, P.: Botox optimization algorithm: a new human-based metaheuristic algorithm for solving optimization problems. Biomimetics 9(3), 137 (2024)

    Article  Google Scholar 

  15. Jiang, A.Q., et al.: Mistral 7B (2023). arXiv preprint arXiv:2310.06825

  16. Jovanovic, L., et al.: Long short-term memory tuning by enhanced harris hawks optimization algorithm for crude oil price forecasting (2024)

    Google Scholar 

  17. Jovanovic, L., Bacanin, N., Simic, V., Mani, J., Zivkovic, M., Sarac, M.: Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics. Soft Comput. 1–20 (2023)

    Google Scholar 

  18. Kowalski, R.: Cyberbullying. In: The Routledge International Handbook of Human Aggression, pp. 131–142. Routledge (2018)

    Google Scholar 

  19. Langos, C.: Cyberbullying: the challenge to define. Cyberpsychol. Behav. Soc. Netw. 15(6), 285–289 (2012)

    Article  Google Scholar 

  20. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. In: Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, vol. 635, no. 2, pp. 2014 (2013)

    Google Scholar 

  21. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  22. Mirjalili, S., Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks: Theory and Applications, pp. 43–55 (2019)

    Google Scholar 

  23. Roumeliotis, K.I., Tselikas, N.D.: ChatGPT and open-AI models: a preliminary review. Future Internet 15(6), 192 (2023)

    Google Scholar 

  24. Salazar, J., Liang, D., Nguyen, T.Q., Kirchhoff, K.: Masked language model scoring (2019). arXiv preprint arXiv:1910.14659

  25. Schapire, R.E.: Explaining AdaBoost. In: Schölkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_5

    Chapter  Google Scholar 

  26. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP (2019). arXiv preprint arXiv:1906.02243

  27. Subaramaniam, K., Kolandaisamy, R., Jalil, A.B., Kolandaisamy, I.: Cyberbullying challenges on society: a review. J. Positive Sch. Psychol. 6(2), 2174–2184 (2022)

    Google Scholar 

  28. Warrens, M.J.: Five ways to look at Cohen’s kappa. J. Psychol. Psychother. 5, 4 (2015)

    Google Scholar 

  29. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  30. Xin-She Yang and Amir Hossein Gandomi: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)

    Article  Google Scholar 

  31. Yoo, J.Y., Qi, Y.: Towards improving adversarial training of NLP models (2021). arXiv preprint arXiv:2109.00544

  32. Yue, X., Di, G., Yueyun, Yu., Wang, W., Shi, H.: Analysis of the combination of natural language processing and search engine technology. Procedia Eng. 29, 1636–1639 (2012)

    Article  Google Scholar 

  33. Zivkovic, M., Jovanovic, L., Ivanovic, M., Bacanin, N., Strumberger, I., Joseph, P.M.: XGBoost hyperparameters tuning by fitness-dependent optimizer for network intrusion detection. In: Sharma, H., Shrivastava, V., Kumari Bharti, K., Wang, L. (eds.) Communication and Intelligent Systems. LNNS, vol. 461, pp. 947–962. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2130-8_74

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jovanovic, L., Bacanin, N., Radomirovic, B., Zivkovic, M., Njegus, A., Antonijevic, M. (2024). Natural Language Processing and AdaBoost Optimized by Modified Metaheuristic for Online Harassment Detection. In: Ragavendiran, S.D.P., Pavaloaia, V.D., Mekala, M.S., Cabezuelo, A.S. (eds) Innovations and Advances in Cognitive Systems. ICIACS 2024. Information Systems Engineering and Management, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-031-69201-7_33

Download citation

Publish with us

Policies and ethics