Skip to main content

A Two Layer Hybrid Approach for Parkinson’s Disease Detection Optimized via Modified Metaheuristic Algorithm

  • Conference paper
  • First Online:
Innovations and Advances in Cognitive Systems (ICIACS 2024)

Abstract

Parkinson’s disease is one of the more frequent disorders affecting the nervous system, primarily affecting motor functioning, but followed by executive dysfunction and, in some cases, dementia. While no cure is available yet, early detection and treatment do have an immense impact on the quality and length of life. Since the symptoms are hard to detect in the early stages, applying machine learning can enhance the diagnostics. Long short-term memory neural networks are employed for their capability to utilize sequential data, with the added help from XGBoost on the last architectural level for higher efficacy of the model forming a collaborative hybrid model. Hyperparameters are crucial for the model’s accuracy and efficiency, so a modified hybridized metaheuristic algorithm is created and applied to the task. The results validate the model, as the presented approach achieved an accuracy exceeding 89% suggesting that the dual-layer hybrid approach introduced in this work has the potential to aid in the early detection of neurodegenerative conditions based on non-invasive collected data from shoe-mounted sensors.

K. Kumpf, S. Kozakijevic, L. Jovanovic, M. Cajic, M. Zivkovic and N. Bacanin—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 154.07
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 241.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Moustafa, A.A., et al.: Motor symptoms in Parkinson’s disease: a unified framework. Neurosci. Biobehav. Rev. 68, 727–740 (2016)

    Article  Google Scholar 

  2. Lange, F., Brückner, C., Knebel, A., Seer, C., Kopp, B.: Executive dysfunction in Parkinson’s disease: a meta-analysis on the Wisconsin Card Sorting Test literature. Neurosci. Biobehav. Rev. 93, 38–56 (2018)

    Article  Google Scholar 

  3. Parker, K.L., Lamichhane, D., Caetano, M.S., Narayanan, N.S.: Executive dysfunction in Parkinson’s disease and timing deficits. Front. Integr. Neurosci. 7, 75 (2013)

    Article  Google Scholar 

  4. Tolosa, E., Garrido, A., Scholz, S.W., Poewe, W.: Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 20(5), 385–397 (2021)

    Article  Google Scholar 

  5. Garcia-Ptacek, S., Kramberger, M.G.: Parkinson disease and dementia. J. Geriatr. Psychiatry Neurol. 29(5), 261–270 (2016)

    Article  Google Scholar 

  6. Matsumoto, M.: Dopamine signals and physiological origin of cognitive dysfunction in Parkinson’s disease. Mov. Disord. 30(4), 472–483 (2015)

    Article  Google Scholar 

  7. Foffani, G., Obeso, J.A.: A cortical pathogenic theory of Parkinson’s disease. Neuron 99(6), 1116–1128 (2018)

    Article  Google Scholar 

  8. Gupta, S., Saravanan, V., Choudhury, A., Alqahtani, A., Abonazel, M.R., Babu, K.S.: Supervised computer-aided diagnosis (CAD) methods for classifying Alzheimer’s disease-based neurodegenerative disorders. Comput. Math. Methods Med. 2022(1), 9092289 (2022)

    Google Scholar 

  9. Koikkalainen, J., et al : Differential diagnosis of neurodegenerative diseases using structural MRI data. NeuroImage: Clinical 11, pp. 435–449 (2016)

    Google Scholar 

  10. Kaipainen, A., et al.: Cerebrospinal fluid and MRI biomarkers in neurodegenerative diseases: a retrospective memory clinic-based study. J. Alzheimers Dis. 75(3), 751–765 (2020)

    Article  Google Scholar 

  11. Khoury, N., Attal, F., Amirat, Y., Oukhellou, L., Mohammed, S.: Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors 19(2), 242 (2019)

    Article  Google Scholar 

  12. Thapa, S., Singh, P., Jain, D.K., Bharill, N., Gupta, A., Prasad, M.: Data-driven approach based on feature selection technique for early diagnosis of Alzheimer’s disease. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). IEEE

    Google Scholar 

  13. Priya, S.J., Rani, A.J., Subathra, M.S.P., Mohammed, M.A., Damaševičius, R., Ubendran, N.: Local pattern transformation based feature extraction for recognition of Parkinson’s disease based on gait signals. Diagnostics 11(8) (2021). https://doi.org/10.3390/diagnostics11081395

  14. Bernardo, L.S., Damaševičius, .R., Ling, S.H., Albuquerque, V.H.C., Tavares, J.M.R.S.: Modified squeezenet architecture for Parkinson’s disease detection based on keypress data. Biomedicines 10(11) (2022). https://doi.org/10.3390/biomedicines10112746

  15. Hashim, F.A., Neggaz, N., Mostafa, R.R., Abualigah, L., Damasevicius, R., Hussien, A.G.: Dimensionality reduction approach based on modified hunger games search: case study on Parkinson’s disease phonation. Neural Comput. Appl. 35(29), 21979–22005 (2023). https://doi.org/10.1007/s00521-023-08936-9

  16. Bernardo, L.S., Damaševičius, R., De Albuquerque, V.H.C., Maskeli?nas, R.: A hybrid two-stage squeezenet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns. Int. J. Appl. Math. Comput. Sci. 31(4), 549–561 (2021). https://doi.org/10.34768/amcs-2021-0037

  17. Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16(8), 440–456 (2020)

    Google Scholar 

  18. Moreira-Neto, A., et al.: Freezing of gait, gait initiation, and gait automaticity share a similar neural substrate in Parkinson’s disease. Hum. Mov. Sci. 86 103018 (2022)

    Google Scholar 

  19. Marcante, A., et al.: Foot pressure wearable sensors for freezing of gait detection in Parkinson’s disease. Sensors 21(1), 128 (2021)

    Google Scholar 

  20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  21. Petrovic, A., et al.: Marine vessel classification and multivariate trajectories forecasting using metaheuristics-optimized extreme gradient boosting and recurrent neural networks. Appl. Sci. 13(16), 9181 (2023)

    Article  Google Scholar 

  22. Zivkovic, T., Nikolic, B., Simic, V., Pamucar, D., Bacanin, N.: Software defects prediction by metaheuristics tuned extreme gradient boosting and analysis based on shapley additive explanations. Appl. Soft Comput. 146, 110659 (2023)

    Article  Google Scholar 

  23. Hochreiter, S.: Studies on dynamic neural networks. Master’s thesis, Institute for Computer Science, Technical University, Munich1, pp. 1–150 (1991)

    Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  25. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  26. Goldbogen, J.A., Friedlaender, A.S., Calambokidis, J., McKenna, M.F., Simon, M., Nowacek, D.P.: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63(2), 90–100 (2013). https://doi.org/10.1525/bio.2013.63.2.5, http://oup.prod.sis.lan/bioscience/article-pdf/63/2/90/19406314/63-2-90.pdf

  27. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

  28. Basha, J., et al.: Chaotic harris hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21(19), 6654 (2021)

    Google Scholar 

  29. Yang, X.-S., Slowik, A.: Firefly algorithm. In: Swarm Intelligence Algorithms, pp. 163–174. CRC Press (2020)

    Google Scholar 

  30. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumpf, K., Kozakijevic, S., Jovanovic, L., Cajic, M., Zivkovic, M., Bacanin, N. (2024). A Two Layer Hybrid Approach for Parkinson’s Disease Detection Optimized via Modified Metaheuristic Algorithm. In: Ragavendiran, S.D.P., Pavaloaia, V.D., Mekala, M.S., Cabezuelo, A.S. (eds) Innovations and Advances in Cognitive Systems. ICIACS 2024. Information Systems Engineering and Management, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-031-69197-3_16

Download citation

Publish with us

Policies and ethics