Skip to main content

Towards Segmenting Cerebral Arteries from Structural MRI

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

The assessment of cerebral arteries and the Circle of Willis (CoW) structure in neuroimaging scans is crucial for diagnosing various cerebrovascular pathologies. While angiographic sequences such as time-of-flight magnetic resonance angiography (TOF-MRA) are indispensable tools for the assessment of cerebral arteries, extending segmentation methods to include structural MRI holds significant clinical promise. In this study, we introduce a novel methodology to address the task of segmenting cerebral arteries in structural sequences. Our main goal is to construct a large database of paired structural sequences with corresponding pseudo-labels. First, we train a segmentation model on a small subset of angiographic data with gold-standard ground-truth labels and then utilize this model to predict pseudo-labels for the remaining unlabeled portion of the database. As subjects in the database comprise both angiographic and structural sequences, we register structural sequences to the space of predicted pseudo-labels, constructing our paired dataset. Finally, we train a sequence-agnostic segmentation model on this dataset with pseudo-labels and conduct extensive evaluations, reporting results for both the full and CoW regions. Our results show that we can learn to segment cerebral arteries from structural MRI, where PD-weighted sequences had the highest scores for both regions. We share our trained models on GitHub to facilitate further experimentation and research (github.com/risc-mi/cerebral-artery-segmentation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://brain-development.org/ixi-dataset.

  2. 2.

    https://public.kitware.com/Wiki/TubeTK/Data.

References

  1. Ajam, A., Aziz, A.A., Asirvadam, V.S., Muda, A.S., Faye, I., Safdar Gardezi, S.J.: A review on segmentation and modeling of cerebral vasculature for surgical planning. IEEE Access 5, 15222–15240 (2017). https://doi.org/10.1109/ACCESS.2017.2718590

  2. Anxionnat, R., et al.: Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 218(3), 799–808 (2001). https://doi.org/10.1148/radiology.218.3.r01mr09799, pMID: 11230659

  3. Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002). https://doi.org/10.1109/42.993126

    Article  Google Scholar 

  4. Bekelis, K., Missios, S., Desai, A., Eskey, C., Erkmen, K.: Magnetic resonance imaging/magnetic resonance angiography fusion technique for intraoperative navigation during microsurgical resection of cerebral arteriovenous malformations. Neurosurg. Focus FOC 32(5), E7 (2012). https://doi.org/10.3171/2012.1.FOCUS127

    Article  Google Scholar 

  5. Bradley, W.: Carmen lecture. Flow phenomena in MR imaging. Am. J. Roentgenol. 150(5), 983–994 (1988). https://doi.org/10.2214/ajr.150.5.983

  6. Bradley, W., Waluch, V., Lai, K., Fernandez, E., Spalter, C.: The appearance of rapidly flowing blood on magnetic resonance images. Am. J. Roentgenol. 143(6), 1167–1174 (1984). https://doi.org/10.2214/ajr.143.6.1167

    Article  Google Scholar 

  7. Chen, C., Chen, Y., Song, S., Wang, J., Ning, H., Xiao, R.: Cerebrovascular segmentation in TOF-MRA with topology regularization adversarial model. In: Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, pp. 4250–4259. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3581783.3611718

  8. Chen, Y., Jin, D., Guo, B., Bai, X.: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes. IEEE Trans. Med. Imaging 41(12), 3520–3532 (2022). https://doi.org/10.1109/TMI.2022.3186731

    Article  Google Scholar 

  9. Choi, U.S., Kawaguchi, H., Kida, I.: Cerebral artery segmentation based on magnetization-prepared two rapid acquisition gradient echo multi-contrast images in 7 Tesla magnetic resonance imaging. Neuroimage 222, 117259 (2020). https://doi.org/10.1016/j.neuroimage.2020.117259

    Article  Google Scholar 

  10. Chung, T.S., Joo, J.Y., Lee, S.K., Chien, D., Laub, G.: Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. Am. J. Neuroradiol. AJNR 20(2), 229–35 (1999)

    Google Scholar 

  11. Deng, Z., et al.: Shape-aware 3D small vessel segmentation with local contrast guided attention. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, pp. 354–363. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_34

    Chapter  Google Scholar 

  12. Descoteaux, M., Collins, D.L., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008). https://doi.org/10.1016/j.media.2008.02.003

    Article  Google Scholar 

  13. Dobrocky, T., et al.: Benefit of advanced 3D DSA and MRI/CT fusion in neurovascular pathology. Clin. Neuroradiol. 33, 669–676 (2023). https://doi.org/10.1007/s00062-022-01260-0

    Article  Google Scholar 

  14. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  15. Gao, X., Uchiyama, Y., Zhou, X., Hara, T., Asano, T., Fujita, H.: A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image. J. Digit. Imaging 24(4), 609–625 (2011). https://doi.org/10.1007/s10278-010-9326-1

    Article  Google Scholar 

  16. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  17. Kim, Y.S., et al.: The advantage of high-resolution MRI in evaluating basilar plaques: a comparison study with MRA. Atherosclerosis 224(2), 411–416 (2012). https://doi.org/10.1016/j.atherosclerosis.2012.07.037

    Article  Google Scholar 

  18. Klein, I.F., Lavallée, P.C., Touboul, P.J., Schouman-Claeys, E., Amarenco, P.: In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 67(2), 327–329 (2006). https://doi.org/10.1212/01.wnl.0000225074.47396.71

    Article  Google Scholar 

  19. Lee, M.J., et al.: Visualization of basilar artery atherosclerotic plaques by conventional T2-weighted magnetic resonance imaging: a case-control study. PLOS ONE 14(2), 1–13 (2019). https://doi.org/10.1371/journal.pone.0212570

  20. Li, M., Li, S., Han, Y., Zhang, T.: GVC-Net: global vascular context network for cerebrovascular segmentation using sparse labels. IRBM 43(6), 561–572 (2022). https://doi.org/10.1016/j.irbm.2022.05.001

    Article  Google Scholar 

  21. Lin, E., Kamel, H., Gupta, A., RoyChoudhury, A., Girgis, P., Glodzik, L.: Incomplete circle of Willis variants and stroke outcome. Eur. J. Radiol. 153, 110383 (2022). https://doi.org/10.1016/j.ejrad.2022.110383

    Article  Google Scholar 

  22. Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014). https://doi.org/10.1117/1.JMI.1.2.024003

    Article  Google Scholar 

  23. Neumann, J.O., et al.: Evaluation of three automatic brain vessel segmentation methods for stereotactical trajectory planning. Comput. Methods Programs Biomed. 182, 105037 (2019). https://doi.org/10.1016/j.cmpb.2019.105037

    Article  Google Scholar 

  24. Neumann, J.O., Giese, H., Nagel, A.M., Biller, A., Unterberg, A., Meinzer, H.P.: MR angiography at 7T to visualize cerebrovascular territories. J. Neuroimaging 26(5), 519–524 (2016). https://doi.org/10.1111/jon.12348

    Article  Google Scholar 

  25. Rastogi, R., et al.: Recent advances in magnetic resonance imaging for stroke diagnosis. Brain Circ. 1, 26–37 (2015)

    Article  Google Scholar 

  26. Rinaldo, L., McCutcheon, B.A., Murphy, M.E., Bydon, M., Rabinstein, A.A., Lanzino, G.: Relationship of A1 segment hypoplasia to anterior communicating artery aneurysm morphology and risk factors for aneurysm formation. J. Neurosurg. 127(1), 89–95 (2017). https://doi.org/10.3171/2016.7.JNS16736

    Article  Google Scholar 

  27. Sabrowsky-Hirsch, B., Moser, P., Thumfart, S., Scharinger, J.: Segmentation and anatomical annotation of cerebral arteries in non-angiographic MRI. In: Proceedings of the 2023 6th International Conference on Digital Medicine and Image Processing, DMIP 2023, pp. 74–81. Association for Computing Machinery (2024). https://doi.org/10.1145/3637684.3637696

  28. Sailer, A.M., Wagemans, B.A., Nelemans, P.J., de Graaf, R., van Zwam, W.H.: Diagnosing intracranial aneurysms with MR angiography. Stroke 45(1), 119–126 (2014). https://doi.org/10.1161/STROKEAHA.113.003133

    Article  Google Scholar 

  29. Sato, Y., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998). https://doi.org/10.1016/S1361-8415(98)80009-1

    Article  Google Scholar 

  30. Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)

    Google Scholar 

  31. Summerlin, D., Willis, J., Boggs, R., Johnson, L.M., Porter, K.K.: Radiation dose reduction opportunities in vascular imaging. Tomography 8(5), 2618–2638 (2022). https://doi.org/10.3390/tomography8050219

    Article  Google Scholar 

  32. Tustison, N.J., et al.: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014). https://doi.org/10.1016/j.neuroimage.2014.05.044

    Article  Google Scholar 

  33. Wang, Y., et al.: JointVesselNet: joint volume-projection convolutional embedding networks for 3D cerebrovascular segmentation. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 106–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_11

  34. Wijesinghe, P., Steinbusch, H., Shankar, S., Yasha, T., De Silva, K.: Circle of Willis abnormalities and their clinical importance in ageing brains: a cadaveric anatomical and pathological study. J. Chem. Neuroanat. 106, 101772 (2020). https://doi.org/10.1016/j.jchemneu.2020.101772

    Article  Google Scholar 

  35. Wrede, K.H., et al.: Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLOS ONE 9(1), 1–10 (2014). https://doi.org/10.1371/journal.pone.0084562

  36. Xia, L., et al.: 3D vessel-like structure segmentation in medical images by an edge-reinforced network. Med. Image Anal. 82, 102581 (2022). https://doi.org/10.1016/j.media.2022.102581

    Article  Google Scholar 

  37. Xia, Y., Ravikumar, N., Lassila, T., Frangi, A.F.: Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials. Med. Image Anal. 87, 102814 (2023). https://doi.org/10.1016/j.media.2023.102814

    Article  Google Scholar 

  38. Zaninovich, O.A., Ramey, W.L., Walter, C.M., Dumont, T.M.: Completion of the circle of Willis varies by gender, age, and indication for computed tomography angiography. World Neurosurg. 106, 953–963 (2017). https://doi.org/10.1016/j.wneu.2017.07.084

    Article  Google Scholar 

  39. Zhang, H., et al.: Cerebrovascular segmentation in MRA via reverse edge attention network. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 66–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_7

  40. Zhao, D.L., et al.: Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA. Clin. Radiol. 78(2), e63–e70 (2023). https://doi.org/10.1016/j.crad.2022.08.132, Special Issue Section: Artificial Intelligence and Machine Learning

Download references

Acknowledgments

This work was funded by the FFG (Austrian Research Promotion Agency) under the grant 872604 (MEDUSA) and research subsidies granted by the government of Upper Austria. RISC Software GmbH is a member of UAR (Upper Austrian Research) Innovation Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Alshenoudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alshenoudy, A., Sabrowsky-Hirsch, B., Scharinger, J., Thumfart, S., Giretzlehner, M. (2024). Towards Segmenting Cerebral Arteries from Structural MRI. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics