Abstract
The assessment of cerebral arteries and the Circle of Willis (CoW) structure in neuroimaging scans is crucial for diagnosing various cerebrovascular pathologies. While angiographic sequences such as time-of-flight magnetic resonance angiography (TOF-MRA) are indispensable tools for the assessment of cerebral arteries, extending segmentation methods to include structural MRI holds significant clinical promise. In this study, we introduce a novel methodology to address the task of segmenting cerebral arteries in structural sequences. Our main goal is to construct a large database of paired structural sequences with corresponding pseudo-labels. First, we train a segmentation model on a small subset of angiographic data with gold-standard ground-truth labels and then utilize this model to predict pseudo-labels for the remaining unlabeled portion of the database. As subjects in the database comprise both angiographic and structural sequences, we register structural sequences to the space of predicted pseudo-labels, constructing our paired dataset. Finally, we train a sequence-agnostic segmentation model on this dataset with pseudo-labels and conduct extensive evaluations, reporting results for both the full and CoW regions. Our results show that we can learn to segment cerebral arteries from structural MRI, where PD-weighted sequences had the highest scores for both regions. We share our trained models on GitHub to facilitate further experimentation and research (github.com/risc-mi/cerebral-artery-segmentation).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ajam, A., Aziz, A.A., Asirvadam, V.S., Muda, A.S., Faye, I., Safdar Gardezi, S.J.: A review on segmentation and modeling of cerebral vasculature for surgical planning. IEEE Access 5, 15222–15240 (2017). https://doi.org/10.1109/ACCESS.2017.2718590
Anxionnat, R., et al.: Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 218(3), 799–808 (2001). https://doi.org/10.1148/radiology.218.3.r01mr09799, pMID: 11230659
Aylward, S., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002). https://doi.org/10.1109/42.993126
Bekelis, K., Missios, S., Desai, A., Eskey, C., Erkmen, K.: Magnetic resonance imaging/magnetic resonance angiography fusion technique for intraoperative navigation during microsurgical resection of cerebral arteriovenous malformations. Neurosurg. Focus FOC 32(5), E7 (2012). https://doi.org/10.3171/2012.1.FOCUS127
Bradley, W.: Carmen lecture. Flow phenomena in MR imaging. Am. J. Roentgenol. 150(5), 983–994 (1988). https://doi.org/10.2214/ajr.150.5.983
Bradley, W., Waluch, V., Lai, K., Fernandez, E., Spalter, C.: The appearance of rapidly flowing blood on magnetic resonance images. Am. J. Roentgenol. 143(6), 1167–1174 (1984). https://doi.org/10.2214/ajr.143.6.1167
Chen, C., Chen, Y., Song, S., Wang, J., Ning, H., Xiao, R.: Cerebrovascular segmentation in TOF-MRA with topology regularization adversarial model. In: Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, pp. 4250–4259. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3581783.3611718
Chen, Y., Jin, D., Guo, B., Bai, X.: Attention-assisted adversarial model for cerebrovascular segmentation in 3D TOF-MRA volumes. IEEE Trans. Med. Imaging 41(12), 3520–3532 (2022). https://doi.org/10.1109/TMI.2022.3186731
Choi, U.S., Kawaguchi, H., Kida, I.: Cerebral artery segmentation based on magnetization-prepared two rapid acquisition gradient echo multi-contrast images in 7 Tesla magnetic resonance imaging. Neuroimage 222, 117259 (2020). https://doi.org/10.1016/j.neuroimage.2020.117259
Chung, T.S., Joo, J.Y., Lee, S.K., Chien, D., Laub, G.: Evaluation of cerebral aneurysms with high-resolution MR angiography using a section-interpolation technique: correlation with digital subtraction angiography. Am. J. Neuroradiol. AJNR 20(2), 229–35 (1999)
Deng, Z., et al.: Shape-aware 3D small vessel segmentation with local contrast guided attention. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2023, pp. 354–363. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_34
Descoteaux, M., Collins, D.L., Siddiqi, K.: A geometric flow for segmenting vasculature in proton-density weighted MRI. Med. Image Anal. 12(4), 497–513 (2008). https://doi.org/10.1016/j.media.2008.02.003
Dobrocky, T., et al.: Benefit of advanced 3D DSA and MRI/CT fusion in neurovascular pathology. Clin. Neuroradiol. 33, 669–676 (2023). https://doi.org/10.1007/s00062-022-01260-0
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195
Gao, X., Uchiyama, Y., Zhou, X., Hara, T., Asano, T., Fujita, H.: A fast and fully automatic method for cerebrovascular segmentation on time-of-flight (TOF) MRA image. J. Digit. Imaging 24(4), 609–625 (2011). https://doi.org/10.1007/s10278-010-9326-1
Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
Kim, Y.S., et al.: The advantage of high-resolution MRI in evaluating basilar plaques: a comparison study with MRA. Atherosclerosis 224(2), 411–416 (2012). https://doi.org/10.1016/j.atherosclerosis.2012.07.037
Klein, I.F., Lavallée, P.C., Touboul, P.J., Schouman-Claeys, E., Amarenco, P.: In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 67(2), 327–329 (2006). https://doi.org/10.1212/01.wnl.0000225074.47396.71
Lee, M.J., et al.: Visualization of basilar artery atherosclerotic plaques by conventional T2-weighted magnetic resonance imaging: a case-control study. PLOS ONE 14(2), 1–13 (2019). https://doi.org/10.1371/journal.pone.0212570
Li, M., Li, S., Han, Y., Zhang, T.: GVC-Net: global vascular context network for cerebrovascular segmentation using sparse labels. IRBM 43(6), 561–572 (2022). https://doi.org/10.1016/j.irbm.2022.05.001
Lin, E., Kamel, H., Gupta, A., RoyChoudhury, A., Girgis, P., Glodzik, L.: Incomplete circle of Willis variants and stroke outcome. Eur. J. Radiol. 153, 110383 (2022). https://doi.org/10.1016/j.ejrad.2022.110383
Modat, M., Cash, D.M., Daga, P., Winston, G.P., Duncan, J.S., Ourselin, S.: Global image registration using a symmetric block-matching approach. J. Med. Imaging 1(2), 024003 (2014). https://doi.org/10.1117/1.JMI.1.2.024003
Neumann, J.O., et al.: Evaluation of three automatic brain vessel segmentation methods for stereotactical trajectory planning. Comput. Methods Programs Biomed. 182, 105037 (2019). https://doi.org/10.1016/j.cmpb.2019.105037
Neumann, J.O., Giese, H., Nagel, A.M., Biller, A., Unterberg, A., Meinzer, H.P.: MR angiography at 7T to visualize cerebrovascular territories. J. Neuroimaging 26(5), 519–524 (2016). https://doi.org/10.1111/jon.12348
Rastogi, R., et al.: Recent advances in magnetic resonance imaging for stroke diagnosis. Brain Circ. 1, 26–37 (2015)
Rinaldo, L., McCutcheon, B.A., Murphy, M.E., Bydon, M., Rabinstein, A.A., Lanzino, G.: Relationship of A1 segment hypoplasia to anterior communicating artery aneurysm morphology and risk factors for aneurysm formation. J. Neurosurg. 127(1), 89–95 (2017). https://doi.org/10.3171/2016.7.JNS16736
Sabrowsky-Hirsch, B., Moser, P., Thumfart, S., Scharinger, J.: Segmentation and anatomical annotation of cerebral arteries in non-angiographic MRI. In: Proceedings of the 2023 6th International Conference on Digital Medicine and Image Processing, DMIP 2023, pp. 74–81. Association for Computing Machinery (2024). https://doi.org/10.1145/3637684.3637696
Sailer, A.M., Wagemans, B.A., Nelemans, P.J., de Graaf, R., van Zwam, W.H.: Diagnosing intracranial aneurysms with MR angiography. Stroke 45(1), 119–126 (2014). https://doi.org/10.1161/STROKEAHA.113.003133
Sato, Y., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998). https://doi.org/10.1016/S1361-8415(98)80009-1
Shit, S., et al.: clDice-a novel topology-preserving loss function for tubular structure segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16560–16569 (2021)
Summerlin, D., Willis, J., Boggs, R., Johnson, L.M., Porter, K.K.: Radiation dose reduction opportunities in vascular imaging. Tomography 8(5), 2618–2638 (2022). https://doi.org/10.3390/tomography8050219
Tustison, N.J., et al.: Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 99, 166–179 (2014). https://doi.org/10.1016/j.neuroimage.2014.05.044
Wang, Y., et al.: JointVesselNet: joint volume-projection convolutional embedding networks for 3D cerebrovascular segmentation. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 106–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_11
Wijesinghe, P., Steinbusch, H., Shankar, S., Yasha, T., De Silva, K.: Circle of Willis abnormalities and their clinical importance in ageing brains: a cadaveric anatomical and pathological study. J. Chem. Neuroanat. 106, 101772 (2020). https://doi.org/10.1016/j.jchemneu.2020.101772
Wrede, K.H., et al.: Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla. PLOS ONE 9(1), 1–10 (2014). https://doi.org/10.1371/journal.pone.0084562
Xia, L., et al.: 3D vessel-like structure segmentation in medical images by an edge-reinforced network. Med. Image Anal. 82, 102581 (2022). https://doi.org/10.1016/j.media.2022.102581
Xia, Y., Ravikumar, N., Lassila, T., Frangi, A.F.: Virtual high-resolution MR angiography from non-angiographic multi-contrast MRIs: synthetic vascular model populations for in-silico trials. Med. Image Anal. 87, 102814 (2023). https://doi.org/10.1016/j.media.2023.102814
Zaninovich, O.A., Ramey, W.L., Walter, C.M., Dumont, T.M.: Completion of the circle of Willis varies by gender, age, and indication for computed tomography angiography. World Neurosurg. 106, 953–963 (2017). https://doi.org/10.1016/j.wneu.2017.07.084
Zhang, H., et al.: Cerebrovascular segmentation in MRA via reverse edge attention network. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 66–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_7
Zhao, D.L., et al.: Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA. Clin. Radiol. 78(2), e63–e70 (2023). https://doi.org/10.1016/j.crad.2022.08.132, Special Issue Section: Artificial Intelligence and Machine Learning
Acknowledgments
This work was funded by the FFG (Austrian Research Promotion Agency) under the grant 872604 (MEDUSA) and research subsidies granted by the government of Upper Austria. RISC Software GmbH is a member of UAR (Upper Austrian Research) Innovation Network.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alshenoudy, A., Sabrowsky-Hirsch, B., Scharinger, J., Thumfart, S., Giretzlehner, M. (2024). Towards Segmenting Cerebral Arteries from Structural MRI. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-66955-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66954-5
Online ISBN: 978-3-031-66955-2
eBook Packages: Computer ScienceComputer Science (R0)