Skip to main content

Causal Inference in NARS

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2024)

Abstract

Humans engage in causal inference almost every day, however, the term ‘causation’ is still quite ambiguous, and few AI systems provide a comprehensive and satisfactory solution to causal inference. In this paper, we adopt the primary meaning of causation, i.e., prediction, and argue that in different contexts other demands are attached to it. We describe the approach of causal inference in NARS and present some working examples, both at the sensorimotor and abstract levels. The theoretical and practical consequences are quite different from traditional AI approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\{T_1 \Rightarrow M, T_2 \Rightarrow M \} \vdash (T_1 \vee T_2) \Rightarrow M \langle F_{int}\rangle \) [15]. It is isomorphic in temporal inference.

References

  1. Bennett, M.T.: Emergent causality and the foundation of consciousness. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds.) Artificial General Intelligence. LNCS, vol. 13921, pp. 52–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33469-6_6

    Chapter  Google Scholar 

  2. Broadbent, A.: Causation. https://iep.utm.edu/causation/. Internet Encyclopedia of Philosophy. https://iep.utm.edu/causation/. Accessed 26 June 2023

  3. Cartwright, N.: Causation: one word, many things. Philos. Sci. 71(5), 805–819 (2004). https://doi.org/10.1086/426771. https://www.cambridge.org/core/product/identifier/S0031824800002889/type/journal_article

  4. Glymour, C., Zhang, K., Spirtes, P.: Review of Causal discovery methods based on graphical models. Front. Genet. 10 (2019). https://www.frontiersin.org/articles/10.3389/fgene.2019.00524

  5. Hammer, P., Lofthouse, T., Fenoglio, E., Latapie, H., Wang, P.: A reasoning based model for anomaly detection in the smart city domain. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1251, pp. 144–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55187-2_13

    Chapter  Google Scholar 

  6. Hammer, P., Lofthouse, T., Wang, P.: The OpenNARS implementation of the non-axiomatic reasoning system. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) Proceedings of the Ninth Conference on Artificial General Intelligence, pp. 160–170 (2016)

    Google Scholar 

  7. Hitchcock, C.: Causal models. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 (2023). https://plato.stanford.edu/archives/spr2023/entries/causal-models/

  8. Hume, D.: An Enquiry Concerning Human Understanding. London (1748)

    Google Scholar 

  9. Pearl, J.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009). https://doi.org/10.1214/09-SS057

  10. Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)

    Google Scholar 

  11. Piaget, J.: The Construction of Reality in the Child. Basic Books, New York (1954)

    Book  Google Scholar 

  12. Schrenk, M.: Metaphysics of Science: A Systematic and Historical Introduction. Routledge, August 2016

    Google Scholar 

  13. Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press (2000)

    Google Scholar 

  14. Wang, P.: Non-axiomatic reasoning system: exploring the essence of intelligence. Ph.D. thesis, Indiana University (1995)

    Google Scholar 

  15. Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific, Singapore (2013)

    Book  Google Scholar 

  16. Wang, P.: On defining artificial intelligence. J. Artif. General Intell. 10(2), 1–37 (2019). https://doi.org/10.2478/jagi-2019-0002

    Article  Google Scholar 

  17. Wang, P.: A constructive explanation of consciousness. J. Artif. Intell. Conscious. 7(2), 257–275 (2020)

    Article  Google Scholar 

  18. Wang, P., Hammer, P.: Issues in temporal and causal inference. In: Bieger, J., Goertzel, B., Potapov, A. (eds.) AGI 2015. LNCS (LNAI), vol. 9205, pp. 208–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21365-1_22

    Chapter  Google Scholar 

  19. Zanga, A., Ozkirimli, E., Stella, F.: A survey on causal discovery: theory and practice. Int. J. Approximate Reasoning 151, 101–129 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We sincerely thank Patrick Hammer’s implementation of NARS, which helped for the experimental part of this paper. We also appreciate the anonymous reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, B., Wang, P. (2024). Causal Inference in NARS. In: Thórisson, K.R., Isaev, P., Sheikhlar, A. (eds) Artificial General Intelligence. AGI 2024. Lecture Notes in Computer Science(), vol 14951. Springer, Cham. https://doi.org/10.1007/978-3-031-65572-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65572-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65571-5

  • Online ISBN: 978-3-031-65572-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics