Abstract
Humans engage in causal inference almost every day, however, the term ‘causation’ is still quite ambiguous, and few AI systems provide a comprehensive and satisfactory solution to causal inference. In this paper, we adopt the primary meaning of causation, i.e., prediction, and argue that in different contexts other demands are attached to it. We describe the approach of causal inference in NARS and present some working examples, both at the sensorimotor and abstract levels. The theoretical and practical consequences are quite different from traditional AI approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
\(\{T_1 \Rightarrow M, T_2 \Rightarrow M \} \vdash (T_1 \vee T_2) \Rightarrow M \langle F_{int}\rangle \) [15]. It is isomorphic in temporal inference.
References
Bennett, M.T.: Emergent causality and the foundation of consciousness. In: Hammer, P., Alirezaie, M., Strannegård, C. (eds.) Artificial General Intelligence. LNCS, vol. 13921, pp. 52–61. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33469-6_6
Broadbent, A.: Causation. https://iep.utm.edu/causation/. Internet Encyclopedia of Philosophy. https://iep.utm.edu/causation/. Accessed 26 June 2023
Cartwright, N.: Causation: one word, many things. Philos. Sci. 71(5), 805–819 (2004). https://doi.org/10.1086/426771. https://www.cambridge.org/core/product/identifier/S0031824800002889/type/journal_article
Glymour, C., Zhang, K., Spirtes, P.: Review of Causal discovery methods based on graphical models. Front. Genet. 10 (2019). https://www.frontiersin.org/articles/10.3389/fgene.2019.00524
Hammer, P., Lofthouse, T., Fenoglio, E., Latapie, H., Wang, P.: A reasoning based model for anomaly detection in the smart city domain. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1251, pp. 144–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55187-2_13
Hammer, P., Lofthouse, T., Wang, P.: The OpenNARS implementation of the non-axiomatic reasoning system. In: Steunebrink, B., Wang, P., Goertzel, B. (eds.) Proceedings of the Ninth Conference on Artificial General Intelligence, pp. 160–170 (2016)
Hitchcock, C.: Causal models. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 (2023). https://plato.stanford.edu/archives/spr2023/entries/causal-models/
Hume, D.: An Enquiry Concerning Human Understanding. London (1748)
Pearl, J.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009). https://doi.org/10.1214/09-SS057
Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)
Piaget, J.: The Construction of Reality in the Child. Basic Books, New York (1954)
Schrenk, M.: Metaphysics of Science: A Systematic and Historical Introduction. Routledge, August 2016
Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press (2000)
Wang, P.: Non-axiomatic reasoning system: exploring the essence of intelligence. Ph.D. thesis, Indiana University (1995)
Wang, P.: Non-Axiomatic Logic: A Model of Intelligent Reasoning. World Scientific, Singapore (2013)
Wang, P.: On defining artificial intelligence. J. Artif. General Intell. 10(2), 1–37 (2019). https://doi.org/10.2478/jagi-2019-0002
Wang, P.: A constructive explanation of consciousness. J. Artif. Intell. Conscious. 7(2), 257–275 (2020)
Wang, P., Hammer, P.: Issues in temporal and causal inference. In: Bieger, J., Goertzel, B., Potapov, A. (eds.) AGI 2015. LNCS (LNAI), vol. 9205, pp. 208–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21365-1_22
Zanga, A., Ozkirimli, E., Stella, F.: A survey on causal discovery: theory and practice. Int. J. Approximate Reasoning 151, 101–129 (2022)
Acknowledgement
We sincerely thank Patrick Hammer’s implementation of NARS, which helped for the experimental part of this paper. We also appreciate the anonymous reviewers for their valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, B., Wang, P. (2024). Causal Inference in NARS. In: Thórisson, K.R., Isaev, P., Sheikhlar, A. (eds) Artificial General Intelligence. AGI 2024. Lecture Notes in Computer Science(), vol 14951. Springer, Cham. https://doi.org/10.1007/978-3-031-65572-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-65572-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-65571-5
Online ISBN: 978-3-031-65572-2
eBook Packages: Computer ScienceComputer Science (R0)