Skip to main content

First Polymer-Based Passive Optical Waveguide for the Visible Range from 633 nm Down to 488 nm

  • Conference paper
  • First Online:
The 25th European Conference on Integrated Optics (ECIO 2024)

Abstract

We investigated the transmission properties of optical waveguide based on fluorinated acrylate polymer and Ormocer® based polymer in the visible range (VIS). Laser transmission-induced transparency (LTIT) and fluorescence were observed in the acrylate-type polymer, while Ormocer® based polymer seem not to show these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smit, M., Williams, K., van der Tol, J.: Past, present, and future of InP-based photonic integration. APL Photon. 4, 50901 (2019). https://doi.org/10.1063/1.5087862

    Article  Google Scholar 

  2. Soares, F.M., Baier, M., Gaertner, T., et al.: High-Performance InP PIC technology development based on a generic photonic integration foundry. In: Optical fiber communication conference:M3F.3 (2018). https://doi.org/10.1364/OFC.2018.M3F.3

  3. Kleinert, M., de Felipe, D., Conradi, H., et al.: Hybrid polymer integration for communications, sensing and quantum technologies from the visible to the infrared. In: 2021 European Conference on Optical Communication (ECOC). IEEE (2021)

    Google Scholar 

  4. Kleinert, M., Nuck, M., Conradi, H., et al.: A platform approach towards hybrid photonic integration and assembly for communications, sensing, and quantum technologies based on a polymer waveguide technology. In: 2019 IEEE CPMT symposium Japan (ICSJ) (2019)

    Google Scholar 

  5. Liu, J., Wang, C., Dang, Z., et al.: Thermally resettable laser transmission induced transparency in polymer waveguides at 635 nm. Opt. Express 30, 17529–17540 (2022). https://doi.org/10.1364/OE.456628

    Article  ADS  Google Scholar 

  6. Liu, J., Wang, C., Zhang, Z.: Laser-transmission-induced Raman emission masked by progressive transparency in polymer waveguides. Opt Lett. OL 47, 6117 (2022). https://doi.org/10.1364/OL.470832

  7. Modaresialam, M., Chehadi, Z., Bottein, T., et al.: Nanoimprint lithography processing of inorganic-based materials. Chem. Mater. 33, 5464–5482 (2021). https://doi.org/10.1021/acs.chemmater.1c00693

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwen Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, T. et al. (2024). First Polymer-Based Passive Optical Waveguide for the Visible Range from 633 nm Down to 488 nm. In: Witzens, J., Poon, J., Zimmermann, L., Freude, W. (eds) The 25th European Conference on Integrated Optics. ECIO 2024. Springer Proceedings in Physics, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-031-63378-2_79

Download citation

Publish with us

Policies and ethics