Abstract
Knowledge Graphs (KGs) are widely employed in artificial intelligence applications, such as question-answering and recommendation systems. However, KGs are frequently found to be incomplete. While much of the existing literature focuses on predicting missing nodes for given incomplete KG triples, there remains an opportunity to complete KGs by exploring relations between existing nodes, a task known as relation prediction. In this study, we propose a relations prediction model that harnesses both textual and structural information within KGs. Our approach integrates walks-based embeddings with language model embeddings to effectively represent nodes. We demonstrate that our model achieves competitive results in the relation prediction task when evaluated on a widely used dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alqaaidi, S.K., Bozorgi, E., Kochut, K.J.: Multiple relations classification using imbalanced predictions adaptation. arXiv preprint arXiv:2309.13718 (2023)
Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Proc. Syst. 26 (2013)
Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowledge graph completion: a review. IEEE Access 8, 192435–192456 (2020)
Cui, Z., Kapanipathi, P., Talamadupula, K., Gao, T., Ji, Q.: Type-augmented relation prediction in knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7151–7159 (2021)
Daza, D., Cochez, M., Groth, P.: Inductive entity representations from text via link prediction. In: Proceedings of the Web Conference 2021, pp. 798–808 (2021)
Demir, C., Moussallem, D., Ngomo, A.C.N.: A shallow neural model for relation prediction. In: 2021 IEEE 15th International Conference on Semantic Computing (ICSC), pp. 179–182. IEEE (2021)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175
He, J., Jia, L., Wang, L., Li, X., Xu, X.: MoCoSA: Momentum contrast for knowledge graph completion with structure-augmented pre-trained language models. arXiv preprint arXiv:2308.08204 (2023)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)
Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. Adv. Neural. Inf. Process. Syst. 33, 22118–22133 (2020)
Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. arXiv preprint arXiv:1506.00379 (2015)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29(1), (2015)
Liu, Y., et al.: RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)
Sak, H., Senior, A., Beaufays, F.: Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128 (2014)
Shen, J., Wang, C., Gong, L., Song, D.: Joint language semantic and structure embedding for knowledge graph completion. arXiv preprint arXiv:2209.08721 (2022)
Shen, T., Zhang, F., Cheng, J.: A comprehensive overview of knowledge graph completion. Knowl. Based Syst. 255, p. 109597 (2022)
Sheu, H.S., Li, S.: Context-aware graph embedding for session-based news recommendation. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp. 657–662 (2020)
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)
Tagawa, Y., et al.: Relation prediction for unseen-entities using entity-word graphs. In: Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pp. 11–16 (2019)
Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models (2023). https://arxiv.org/abs/2307.09288 (2023)
Vaswani, A., et al.: Attention is all you need. In: Advance Neural Information Processing System vol. 30 (2017)
Wang, B., Shen, T., Long, G., Zhou, T., Wang, Y., Chang, Y.: Structure-augmented text representation learning for efficient knowledge graph completion. In: Proceedings of the Web Conference 2021, pp. 1737–1748 (2021)
Wang, L., Zhao, W., Wei, Z., Liu, J.: Simkgc: simple contrastive knowledge graph completion with pre-trained language models. arXiv preprint arXiv:2203.02167 (2022)
Wang, X., et al.: KEPLER: a unified model for knowledge embedding and pre-trained language representation. Trans. Assoc. Comput. Linguist. 9, 176–194 (2021)
Xu, J., Chen, K., Qiu, X., Huang, X.: Knowledge graph representation with jointly structural and textual encoding. arXiv preprint arXiv:1611.08661 (2016)
Yani, M., Krisnadhi, A.A.: Challenges, techniques, and trends of simple knowledge graph question answering: a survey. Information 12(7), 271 (2021)
Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion. arXiv preprint arXiv:1909.03193 (2019)
Youn, J., Tagkopoulos, I.: KGLM: Integrating knowledge graph structure in language models for link prediction. arXiv preprint arXiv:2211.02744 (2022)
Zha, H., Chen, Z., Yan, X.: Inductive relation prediction by BERT. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 5923–5931 (2022)
Zhuang, Z., Liang, Z., Rao, Y., Xie, H., Wang, F.L.: Out-of-vocabulary word embedding learning based on reading comprehension mechanism. Nat. Lang. Process. J. 5, 100038 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Alqaaidi, S.K., Kochut, K.J. (2024). Knowledge Graph Completion Using Structural and Textual Embeddings. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Avlonitis, M., Papaleonidas, A. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 713. Springer, Cham. https://doi.org/10.1007/978-3-031-63219-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-63219-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-63218-1
Online ISBN: 978-3-031-63219-8
eBook Packages: Computer ScienceComputer Science (R0)